
1

Learning context-free
grammars

Colin de la Higuera
University

of Nantes

2

Acknowledgements
Laurent Miclet, Jose Oncina and Tim Oates for previous
versions of these slides.
Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe
Ezequel, Henning Fernau, Thierry Murgue, Franck Thollard,
Enrique Vidal, Frédéric Tantini,...
List is necessarily incomplete. Excuses to those that have
been forgotten.

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Chapter 15

3

Outline

1.

Context-free grammars
2.

Paradigms and theorems

3.

Some heuristics
4.

Applications

5.

Conclusions

4

1. Context free
grammars

5

What is a context free
grammar?
A 4-tuple (Σ, S, V, P) such that:

Σ is the alphabet
V is a finite set of non terminals
S is the start symbol
P ∈ V × (V∪Σ)* is a finite set of rules

6

Example

The Dyck1

grammar
(Σ, S, V, P)
Σ = {a, b}
V = {S}
P = {S → aSbS, S → λ }

7

Derivations and derivation
trees

S → aSbS
→ aaSbSbS
→ aabSbS
→ aabbS
→ aabb

a

a

b

b

S

SS

S

S

λ

λ

λ

8

Why learn context free
grammars (CFG)?

More expressive than regular grammars: all
regular languages are context-free
next step up on the Chomsky hierarchy
allows to define more precise and
expressive structure

9

Tree Grammars

Similar to CFG

but the rules have the
shape:

A →
a

B C …

10

Example

Let P = { S → a,
S →

, S →

}

+

a *

a a

+

S *

S S

+

S S

S

+

S S

*

S S

11

Skeletons and tree grammars

Any context free grammar can be transformed
into a tree grammar that produces skeletons

A tree automaton:

S →

λ

S → σ

a S b S

S → σ

S →

aSbS

12

Theory

It is made harder by the hardness
of various problems over CF

 grammars:
Expansiveness
Ambiguity
Undecidability of the equivalence
problem

Présentateur
Commentaires de présentation
No se a que te refieres con que aprender de solo muestras positivas es “hard”. Si te refieres a aprendr CFG es imposible!!

13

Expansiveness

T0 → T1

T1

+...
T1 → T2

T2

+...

Tn

→ a

LG

(T0

)={a2n}

String

a2n is
probable

but

very long.
What about
complexity?

14

Ambiguity

S → S*S, S → a, S → b

Where does a*b*b come from?
Do we really want to learn languages?

15

Equivalence problem revisited

When trying to learn a grammar,
are we not attempting to find some
normal form?
Does that not seem difficult when
the equivalence problem is
undecidable?

16

Practical issues: parsing

CYK, complexity: O(n3)

Earley, complexity: O(n3)

Valiant, complexity: O(n2.81)

17

2. Paradigms and
results

18

Identification in the limit
The examples are provided in sequence
For each new example the learning
algorithm must provide a hypothesis
Success if the sequence of hypotheses
converges

Présentateur
Commentaires de présentation
Añadir un dibujo

19

Learning from positives examples

It is impossible to identify in the limit
any super-finite class of language from
positive examples only (Gold, 67)
A super-finite class of languages
includes:

all the finite languages and
at least an infinite language

20

What can we do?

Use of some additional help:
negative data
access to oracles
knowledge of the structure
belief there is a structured distribution

Avoid super-finite classes of languages
Combinations of both ideas

21

Can we learn in the
limit context-free

languages from …
Complexity does not matter!

22

... positive examples?

NO (Gold, 67)
the class of context free languages is super-
finite

23

... positive and negative
examples?

YES (Gold, 67)
by an enumeration procedure:

1.

order all the CFG in a list
2.

search the list and return the first grammar
consistent with the data

Complexity is O(⏐V⏐⏐P⏐⏐V⏐

)

24

... skeletons of positive examples?

NO, as a consequence of (Gold, 67)
the class of the tree languages that represent
skeletons is super-finite

YES, (Sakakibara, 92)

if the skeletons come from a reversible
context free grammar (normal form)

25

Important!

In the first case we want to identify a
grammar that matches a set of trees
In the second case we will need trees that
conform to the unknown grammar

Crucial question… what are we learning?
Grammars or languages?

26

Reversible context free
languages

Deterministic bottom-up / top-down
A → α and B → α ⇒ A=B
A → αBβ and A → αCβ ⇒ B=C
Algorithm

Build the grammar that only accepts the
sample
Merge pair of non terminals that violate
some of the previous rules

27

... queries?

Not well known!
The most used queries are:

Membership queries
Equivalence queries

Note that an equivalence query might be
non computable.

Queries are usually introduced to deal
with complexity issues…

Présentateur
Commentaires de présentation
¿Donde?

28

Polynomial identification

There are several definitions:
(Pitt, 89) and (Yokomori, 91)

Polynomial update time
Polynomial number of hypothesis changes
Polynomial number of implicit prediction errors
(Yokomori)

In polynomial time and data (cdlh, 97)
Polynomial update time
Polynomial characteristic sample

29

Can we learn polynomially
in the limit context free

languages from …

30

... positive and negative
examples?

NO,
if usual cryptographic rules apply
(Pitt and Warmuth, 88)

In the polynomial time and data

framework,
context-free and linear*

languages are not

identifiable (cdlh, 97)

* the rules have the shape: A → vBw, A → v

31

… positive skeletons?

YES,
provided that the grammar is written in
reversible normal form (Sakakibara, 92)
even though the regular languages are not
identifiable from positive skeletons!!!

32

... positive and negative
skeletons?

YES,
it is a special case of learning
tree grammars from positive and
negative examples
(García

& Oncina, 93)

33

... positive skeletons and negative
examples?

YES
with a slight modification of the
previous algorithm

34

... the knowledge that the
distribution is given by a
stochastic context-free grammar?

There is not even a sensible definition of
what this can be
The number of examples should be very
large in order to have information about
the existence of a rule with a very low
probability

35

... And if we have the grammar
also?

Not known!
There are some heuristics...

Expectation maximization
Inside-Outside

36

… queries?

YES,
provided the grammar is written
in reversible normal form

(Sakakibara, 90)
NO,

in general

37

Can we learn polynomially
in the limit some

subclasses of context-free
languages from …

38

... positive examples?
Subclasses of even linear languages
(Takada, 88), (Sempere

& García, 94),

(Mäkinen,96)
Rules with shape A → aBb + a +λ
The trick is to transform A → aBb into
A →[ab]B, then we have a regular language

Very simple grammars (Yokomori, 91)
Rules with shape A → a + aB + aBC
Globally deterministic in “a ”

39

... positive and negative
examples?

Even Linear Languages
(Takada, 88), (Mäkinen, 96), (Sempere

& García, 94)

Same trick as in the previous slide
Linear Deterministic Languages
(de la Higuera

& Oncina, 02)

Rules of shape A → aBv +λ
A → aBv rules deterministic in a

40

... positive skeletons?

Some classes transposed from regular
languages to tree languages and then to
context free

k-testable tree languages (Knuutila, 93)
(Fernau, 02)
(Ishizaka, 89)
(Yokomori, 91)

Présentateur
Commentaires de présentation
Habría que mencionar cuales son las calses que identifican Fernau, Ishizaka y Yokomori.

41

... a distribution?

Stochastic Deterministic Linear Languages
(de la Higuera

& Oncina, 03)

Identification of the structure
Polynomial update time

Présentateur
Commentaires de présentation
¿Porqué no hace bien la guionización?

42

... Queries?

Simple Deterministic Languages
(Ishizaka, 89)

Grammar:
rules with shape A → a + aB + aBC
deterministic in “a”

Queries:
membership queries
extended equivalence queries

43

Can we PAC learn
context free

languages from …

44

… positive and negative
examples?

NO,
If usual cryptographic rules
apply:
(Kearns & Valiant, 94)

45

… positive examples?

NO,
a consequence of the previous result

46

… positive skeletons?

NO,
because regular languages cannot be learned …

Présentateur
Commentaires de présentation
¿Estas seguro de esto? En el caso de cadenas no pasa si restringimos el típo de esqueletos.

47

… positive skeletons and negative
examples?

probably NO,
if usual cryptographic rules apply
It should be a direct consequence of
(Kearns & Valiant, 94)

48

3 “Pragmatic”
Learning

Many different ideas:
Incremental learning
MDL principle
Genetic/evolutionary algorithms
Reversing the parser
Tree automata learning
Merging

49

3.1 SEQUITUR

(http://sequitur.info/)
(Neville Manning & Witten, 97)

Idea: construct a CF grammar from a very
long string w, such that L(G)={w}

No generalization
Linear time (+/-)
Good compression rates

50

Principle

The grammar with respect to

the string:
Each rule has to be used at least twice
There can be no sub-string of length 2
that appears twice

51

Examples

S→abcdbc

S→AbAab
A →aa

S →aAdA
A →bc

S→aabaaab

S→AaA
A →aab

52

abcabdabcabd

53

In the beginning, God created the heavens and the
earth.

And the earth was without form, and void; and
darkness was upon the face of the deep. And the
Spirit of God moved upon the face of the waters.

And God said, Let there be light: and there was light.
And God saw the light, that it was good: and God

divided the light from the darkness.
And God called the light Day, and the darkness he

called Night. And the evening and the morning were
the first day.

And God said, Let there be a firmament in the midst
of the waters, and let it divide the waters from the
waters.

And God made the firmament, and divided the waters
which were under the firmament from the waters
which were above the firmament: and it was so.

And God called the firmament Heaven. And the
evening and the morning were the second day.

54

55

appending a symbol to rule S
using an existing rule
creating a new rule
and deleting a rule

Sequitur options

56

Results

On text:
2.82 bpc
compress 3.46 bpc
gzip 3.25 bpc
PPMC 2.52 bpc

57

3.2 Using a simplicity bias
(Langley & Stromsten, 00)

Based on algorithm GRIDS (Wolff, 82)

Main characteristics:
MDL principle
Not characterizable
Not tested on large benchmarks

58

Two learning operators
Creation of non terminals and rules

NP →ART ADJ NOUN
NP →ART ADJ ADJ NOUN

NP →ART AP1
NP →ART ADJ AP1
AP1 → ADJ NOUN

59

Merging two non terminals
NP →ART AP1
NP →ART AP2
AP1 → ADJ NOUN
AP2 → ADJ AP1

NP →ART AP1
AP1 → ADJ NOUN
AP1 → ADJ AP1

60

Scoring function: MDL principle:
⎪G⎪+Σw∈T ⎪d(w)⎪
Algorithm:

find best merge that improves
current grammar
if no such merge exists, find best
creation
halt when no improvement

61

Results

On subsets of English grammars (15
rules, 8 non terminals, 9 terminals): 120
sentences to converge
on (ab)*: all (15) strings of length ≤ 30
on Dyck1: all (65) strings of length ≤ 12

62

3.3 Context free grammar
induction with genetic/
evolutionary algorithms

(Wyard, 91)
(Dupont, 94)
(Kammeyer & Belew, 96)
(Sakakibara & Kondo, 99)
(Sakakibara & Muramatsu, 00)

63

Main issue

Encoding a context free grammar
as a string such that after
crossovers and mutations the string
is still a grammar...
Some ideas:

Fill up with junk dna: (Kammeyer &
Belew, 96)
A grammar is a partition. Encode the
partition

64

{1,2,6}{3}{4,5}{7,9}{8} 112331454

112341454{1,2,6}{3}{4}{5,7,9}{8}

65

3.4 Reversible CFGs

Definition:

A context-free grammar
is reversible if the following two
conditions hold.

66

The First Condition

Regular grammars
If there exist productions of the
form A aB and A aC then B = C.

Context-free grammars
If there exist productions of the form
A aBb and A aCb then B = C.

67

The Second Condition

Regular grammars
If there exist productions of the form
A a and B a and there exists a
string v that is a k-leader of both A
and B then A = B

Context-free grammars
If there exist productions of the form
A a and B a then A = B

68

Sakakibara’s K-RI Algorithm

Given: a sample of strings S in the
language of some reversible
context-free grammar and their
unlabeled derivation trees

Identify: the smallest reversible
context-free language containing S

69

Labeled Derivation Trees

S
a A

bA
ba

70

Unlabeled Derivation Trees

?
a ?

b?
ba

71

Labelling UDTs

S
a N1

bN2

ba

72

Converting to Productions

S
a N1

bN2

ba

S a N1

N1 N2 b
N2 a b

73

Sakakibara’s RC Algorithm

G ←

empty context-free grammar
for each UDT in sample

assign non-terminal N to root node
assign unique NT names to all other nodes
convert to list of productions and add to G

while G violates either condition for
reversibility

merge any pair of non-terminals causing a
violation

return G

74

An Example
?

a

b

λ

b

b

λ

b

?

a

a

b

λ

?

?

?

?

?

?

?

?

?

λ

?

75

S

a N5

b N6

λ

S

b N7

b N8

λ

S

b N4

λ

S

a N1

a N2

b N3

λ

76

S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N6

N6 λ

S b N7

N7 b N8

N8 λ
S b N4

N4 λ

77

S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N6

N6 λ

S b N7

N7 b N8

N8 λ
S b N4

N4 λ

78

S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N3

S b N7

N7 b N3S b N3

79

S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N3

S b N7

N7 b N3S b N3

80

S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N3

S b N3

N3 b N3

81

S a S
S b N3

N3 b N3

N3 λ

L(G) = a*b+

82

S a S
S b N3

N3 b N3

N3 λ

L(G) = a*b+

83

S a S
S b S
S λ

L(G) = {a, b}*

84

Claim 1

Given a set of strings S from a zero-
 reversible regular language, RC(S) =

K-RL(S)

85

K-Reversible Context-Free
Grammars

Definition:

The k-ancestors of non-
 terminal A are the non-terminals that

can derive a string containing A in
exactly k steps
Definition:

The k-contexts of non-

 terminal A are the strings that can be
derived from the k-ancestors of A in k

 steps augmented with their unlabeled
derivation trees

86

Definition:

A context-free grammar is k-
 reversible if the following two conditions

hold
1)

If there exist productions of the form
A aBb and A aCb then B = C

2)

If there exist productions of the form
A a and B a and there exists a
string b that is a k-context of both A
and B then A = B

K-Reversible Context-Free
Grammars

87

The KRCFG Algorithm
G = empty context-free grammar
for each UDT in sample

assign non-terminal S to root node
assign unique NT names to all other nodes
convert to list of productions and add to G

while G violates either condition for k-
 reversibility

merge any pair of non-terminals causing a
violation

return G

88

Analysis

Theorem 1:

KRCFG performs the least amount
of generalization (i.e. merging) required to
ensure that the grammar it returns is k-

 reversible

Complexity:

O(m k+c1

* n k+c2)
• m = number of productions in original grammar
• n = number of non-terminals in original grammar
• c1

, c2

are small

89

4 Applications

Computational Biology
Program synthesis, ILP, compiler
construction
Language models, speech & NLP
Document structure, XML

90

4.1 Secondary structure
predictions

Why: find the secondary structure
Concept: a CF grammar
Data: long tagged strings over a small
alphabet: (RNA)
Difficulties:

only positive data : restrict to a subclass
of CF grammars, or use stochastic CF
grammars

Bibliography: Sakakibara et al. 94, Abe &
Mamitsuka 94

91

92

Combining stochastic CFGs and n-grams
over RNA sequences
(Salvador & Benedi 2002)

CFGs to learn the structure and long
term dependencies
bigrams for the local relations (non
structured part)
Sakakibara’s algorithm (minimum
reversible consistent CFG)
Probablity estimation (inside-outside)

93

4.2 Inductive logic
programming

Why: learn recursive programs
Concept: tree automata and grammars
Input: a transformation of examples and
background knowledge into strings (SLD
refutations, or terms)

94

Difficulties:
getting the first order information into
strings/trees
regular grammars are very restricted
numeric data
post-transformation into a logic program

Bibliography: Merlin, GIFT (Böstrom, 95 &
96, Bernard & cdlh, 99)

96

GIFT
architecture of the system

ObservationsObservations
EE++ EE--

Background Background
knowledgeknowledge

Set of Set of
termsterms

ExpertExpert
(Set of rules)(Set of rules)

Tree Tree
automatonautomaton

Logic ProgramLogic Program
stack(Arg1) :-

start(Arg1,X),
p7(Arg1,X).

start(X,X).
p7(Arg1,[X|L]) :-

p3(Arg1,X),
p6(Arg1,L).

p7(Arg1,[X|L]) :-
p5(Arg1,X),
p6(Arg1,L).

p7(Arg1,[X|L]) :-
p3(Arg1,X),
p7(Arg1,L).

p3(Arg1,Obj) :-

shape(Obj,square).
p5(Arg1,Obj) :-

shape(Obj,
triangle).

p6(Arg1,[]).

Set Set
of typed termsof typed terms

97

4.3 Natural Language
Processing

98

System EMILE
(version 4.1.6, 2003) Marco Vervoort / Pieter
Adriaans

Entity Modeling Intelligent Learning Engine
A context/expression pair is a sentence split
into 3 parts: John (makes) tea.

makes is an expression
John (.) tea is a context.

Identifying contexts, expressions is what
EMILE is about.
How? Through clustering algorithms

99

An example
the fox jumped. the dog jumped.
the quick brown fox jumped.
the lazy dog jumped.
the fox jumped over the dog.
the dog jumped over the fox.
the quick brown fox jumped over the dog.
the lazy dog jumped over the fox.
the fox jumped over the lazy dog.
the dog jumped over the quick brown fox.
the lazy dog jumped over the quick brown fox.

100

Result of Emile

[0] [18] dog jumped .
[0] the [4] jumped .
[0] [18] dog jumped over the [4] .
[0] the [4] jumped over [18] dog .
[4] fox
[4] quick brown [4]
[18] the
[18] the lazy

101

System ABL

(van Zaanen, 00…)

Uses alignments for grammar construction
System for unsupervised learning

102

4.4 Structured documents:
XML

Extract XML schema (Chiidlovski

200x)

<book>
<part>
<chapter>
<sect1/>
<sect1>
<orderedlist

numeration="arabic">

<listitem/>
<f:fragbody/>
</orderedlist>
</sect1>
</chapter>
</part>
</book>

103

DTD
Copied from http://www.vervet.com/

<!DOCTYPE NEWSPAPER [
<!ELEMENT NEWSPAPER (ARTICLE+)>
<!ELEMENT ARTICLE (HEADLINE,BYLINE,LEAD,BODY,NOTES)>
<!ELEMENT HEADLINE (#PCDATA)>
<!ELEMENT BYLINE (#PCDATA)> <!ELEMENT LEAD (#PCDATA)>
<!ELEMENT BODY (#PCDATA)>
<!ELEMENT NOTES (#PCDATA)>
<!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED>
<!ATTLIST ARTICLE EDITOR CDATA #IMPLIED>
<!ATTLIST ARTICLE DATE CDATA #IMPLIED>
<!ATTLIST ARTICLE EDITION CDATA #IMPLIED>
<!ENTITY NEWSPAPER "Vervet

Logic Times">

<!ENTITY PUBLISHER "Vervet

Logic Press">
<!ENTITY COPYRIGHT "Copyright 1998 Vervet

Logic Press">]>

http://www.vervet.com/

104

5 Conclusion

Theoretical hardness of the polynomial
time learning issues
determinism and linearity seem to play a
strong part
algorithms and heuristics are based on
very clever ideas
not enough comparable work

105

Perspectives

Tasks
Benchmarks
Prototypes
Clearly identifiable open problems

Bottlenecks

106

Benchmarks, some features that
one expects...

Small/large/very large alphabets (2, <20, x0 000)
All grammars/simple grammars
Languages or grammars (normal forms?)
Size

of data set
of grammars

No help (only positive data)/some help:
Skeletons
Partial structure
Distribution

Noise/no noise
Recognition/tolerance

107

Prototypes

Avoid having a repetition of the
DFA/stochastic DFA situation: no fixed
RPNI/Alergia around
distribution of implementations is a
necessity
distributing your algorithm means extra
references!!!

108

Open problems (1)
Limits of learning from polynomial data?
Comparison between models
A plausible model for polynomial identification
with probability 1 or something related to this…
Find a problem solvable on strings for DFA but
not solvable on skeletons for CFGs/tree automata

109

Open problems (2)
Provide an algorithm for the case of
learning a stochastic CF grammar from
strings
Integrate the categorical grammars into
the picture
Learn deterministic linear grammars (i.e.
one turn deterministic push-down
automata)

	Learning context-free grammars
	Acknowledgements
	Outline
	1. Context free grammars
	What is a context free grammar?
	Example
	Derivations and derivation trees
	Why learn context free grammars (CFG)?
	Tree Grammars
	Example
	Skeletons and tree grammars
	Theory
	Expansiveness
	Ambiguity
	Equivalence problem revisited
	Practical issues: parsing
	2. Paradigms and results
	Identification in the limit
	Learning from positives examples
	What can we do?
	Can we learn in the limit context-free languages from …
	... positive examples?
	... positive and negative examples?
	... skeletons of positive examples?
	Important!
	Reversible context free languages
	... queries?
	Polynomial identification
	Can we learn polynomially in the limit context free languages from …
	... positive and negative examples?
	… positive skeletons?
	... positive and negative skeletons?
	... positive skeletons and negative examples?
	... the knowledge that the distribution is given by a stochastic context-free grammar?
	... And if we have the grammar also?
	… queries?
	Can we learn polynomially in the limit some subclasses of context-free languages from …
	... positive examples?
	... positive and negative examples?
	... positive skeletons?
	... a distribution?
	... Queries?
	Can we PAC learn context free languages from …
	… positive and negative examples?
	… positive examples?
	… positive skeletons?
	… positive skeletons and negative examples?
	3 “Pragmatic” Learning
	3.1 SEQUITUR
	Principle
	Examples
	abcabdabcabd�
	Diapositive numéro 53
	Diapositive numéro 54
	Sequitur options
	Results
	3.2 Using a simplicity bias
	Two learning operators
	Diapositive numéro 59
	Diapositive numéro 60
	Results
	3.3 Context free grammar induction with genetic/ evolutionary algorithms
	Main issue
	Diapositive numéro 64
	Diapositive numéro 65
	Diapositive numéro 66
	Diapositive numéro 67
	Diapositive numéro 68
	Diapositive numéro 69
	Diapositive numéro 70
	Diapositive numéro 71
	Diapositive numéro 72
	Diapositive numéro 73
	Diapositive numéro 74
	Diapositive numéro 75
	Diapositive numéro 76
	Diapositive numéro 77
	Diapositive numéro 78
	Diapositive numéro 79
	Diapositive numéro 80
	Diapositive numéro 81
	Diapositive numéro 82
	Diapositive numéro 83
	Diapositive numéro 84
	Diapositive numéro 85
	Diapositive numéro 86
	Diapositive numéro 87
	Diapositive numéro 88
	4 Applications
	4.1 Secondary structure predictions
	Diapositive numéro 91
	Combining stochastic CFGs and n-grams over RNA sequences�(Salvador & Benedi 2002)
	4.2 Inductive logic programming
	
	GIFT�architecture of the system
	4.3 Natural Language Processing
	System EMILE�(version 4.1.6, 2003) Marco Vervoort / Pieter Adriaans
	An example
	Result of Emile
	System ABL
	4.4 Structured documents: XML
	DTD
	5 Conclusion
	Perspectives
	Benchmarks, some features that one expects...
	Prototypes
	Open problems (1)
	Open problems (2)

