LABORATOIRE D'INFORMATIQUE
DE NANTES ATLANTIQUE

1Nz

UMR CNRS 6241
Université de Nantes
Ecole des Mines de Nantes

Learning context-free
grammars

Colin de la Higuera
University of Nantes

A‘
3 PASCAL

§ Pattern Analysis, Statistical Modelling and
Computational Llearning

Région |
) PAYS DE LA LOIRE 1

Acknowledgements

e Laurent Miclet, Jose Oncina and Tim Oates for previous
versions of these slides.

e Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe
Ezequel, Henning Fernau, Thierry Murgue, Franck Thollard,
Enrique Vidal, Frédéric Tantini,...

e List is necessarily incomplete. Excuses to those that have
been forgotten.

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Grammatical
Inference
Learn "III'IE'.' Automata and Grammars

Chapter 15

Outline

1. Context-free grammars
Paradigms and theorems
Some heuristics
Applications

Conclusions

o &~ w N

1. Context free
grammars

What i1s a context free
grammar?

A 4-tuple (2, S, V, P) such that:
o 2 is the alphabet
o Vis a finite set of non terminals
e Sis the start symbol
o Pe Vx (KUX) is a finite set of rules

Example

The Dyck, grammar

o (2,5 VP

o 2 ={a b}

o V={5}

o P={5—> as5hs, S —» 1}

Derivations and derivation
trees

S— asbs
—> aasShSbS /[\
— aabsbs
— aabbs

— aabb a

>> 0——o (I)°
> 0—o0 (I)
>0 (15

Why learn context free
grammars (CFG)?

e More expressive than regular grammars: all
regular languages are context-free

e next step up on the Chomsky hierarchy

e allows to define more precise and
expressive structure

Similar to ¢F& but the rules have the
shape:

Tree Grammars

A7 /1IN

S

, S>> x }
s &

Example
Let P={ 5> q,
S—> +
/\
S

Skeletons and tree grammars

Any context free grammar can be transformed
into a tree grammar that produces skeletons

A ftree automaton:

S—»> ©
S > asSbs //\\
— a s b s

S > A S - o

11

®

Theory

It is made harder by the hardness
of various problems over CF
grammars:

e Expansiveness

e Ambiguity

e Undecidability of the equivalence
problem

Présentateur
Commentaires de présentation
No se a que te refieres con que aprender de solo muestras positivas es “hard”. Si te refieres a aprendr CFG es imposible!!

To— T Ti+...
T, > T, Ty+.. String & is
probable but
very long.
What about
T,—>a complexity?

Expansiveness

Ambiguity

e 5> 55 S—>aS5S—->b

e Where does a*6*b come from?
e Do we really want to learn languages?

e When trying to learn a grammar,
are we not attempting to find some
normal form?

e Does that not seem difficult when
the equivalence problem s
undecidable?

Equivalence problem revisited

Practical issues: parsing

o CYK, complexity: o(s°)
e Earley, complexity: o(#°)

e Valiant, complexity: o(#78?)

2. Paradigms and
results

e The examples are provided in sequence

e For each new example the learning
algorithm must provide a hypothesis

e Success if the sequence of hypotheses
converges

ldentification In the limit

Présentateur
Commentaires de présentation
Añadir un dibujo

e It is impossible to identify in the limit
any super-finite class of language from
positive examples only (Gold, 67)

e A super-finite class of languages
includes:

all the finite languages and
at least an infinite language

Learning from positives examples

What can we do?

e Use of some additional help:
negative data
access to oracles
knowledge of the structure
belief there is a structured distribution

e Avoid super-finite classes of languages
e Combinations of both ideas

20

Can we learn In the
limit context-free
languages from ...

Co
/77,()/e .
"y dogg n
Altey

... positive examples?

NO (Gold, 67)

o the class of context free languages is super-
finite

22

... positive and negative
examples?

YES (Gold, 67)

e by an enumeration procedure:
order all the £FGin a list

search the list and return the first grammar
consistent with the data

Complexity is O(| ¥ 171V

23

... Skeletons of positive examples?

NO, as a consequence of (Gold, 67)

o the class of the tree languages that represent
skeletons is super-finite

® YES, (Sakakibara, 92)

o if the skeletons come from a
context free grammar (normal form)

24

e In the first case we want to identify a
grammar that matches a set of trees

e In the second case we will need trees that
conform to the unknown grammar

Important!

e Crucial question.. what are we learning?
Grammars or languages?

25

Reversible context free
languages

e Deterministic bottom-up / top-down
e A aand £— a= A=
o A— alffand A - alf= L=

e Algorithm
Build the grammar that only accepts the
sample

Merge pair of non terminals that violate
some of the previous rules

26

... gqueries?

Not well known!

e The most used queries are:
Membership queries
Equivalence queries

Note that an equivalence query might be
non computable.

Queries are usually introduced to deadl
with complexity issues...

Présentateur
Commentaires de présentation
¿Donde?

Polynomial identification

There are several definitions:
e (Pitt, 89) and (Yokomori, 91)

Po
Po
Po

ynomia
ynhomia
ynhomia

update time
number of hypothesis changes
number of implicit prediction errors

(Yokomori)

e In pO
Po
Po

ynomia
ynomia

ynomia

time and data (cdlh, 97)
update time
characteristic sample

28

Can we learn polynomially
In the limit context free
languages from ...

... positive and negative
examples?

NO,
e if usual cryptographic rules apply
(Pitt and Warmuth, 88)

In the polynomial time and data framework,

context-free and linear® languages are not
identifiable (cdlh, 97)

* the rules have the shape: 4 > vEw, A > v

30

... positive skeletons?

YES,

o provided that the grammar is written in
reversible normal form (Sakakibara, 92)

o even though the regular languages are not
identifiable from positive skeletonsll!

31

... positive and negative
skeletons?

YES,

oit is a special case of learning
tree grammars from positive and
negative examples

(Garcia & Oncina, 93)

... positive skeletons and negative
examples?

YES

o with a slight modification of the
previous algorithm

... the knowledge that the
distribution is given by a
stochastic context-free grammar?

e There is not even a sensible definition of
what this can be

e The number of examples should be very
large in order to have information about
the existence of a rule with a very low
probability

... And If we have the grammar
also?

Not knownl!
There are some heuristics...
o Expectation maximization
e Inside-Outside

35

... queries?

YES,

o provided the grammar is written
in reversible normal form

(Sakakibara, 90)
NO,

in general

Can we learn polynomially
In the limit some
subclasses of context-free
languages from ...

37

... positive examples?

. of even linear languages

(Takada, 88), (Sempere & Garcia, 94),
(Mdkinen,96)

o Rules with shape 4 — a£b+ a+\

e The trick is to transform 4 — aZ£b into
—[ab)Z, then we have a reqgular language

e Very simple grammars (Yokomori, 91)
o Rules with shape 4 — a+ af+ a
e Globally deterministic in "a”

38

... positive and negative
examples?

e Even Linear Languages
(Takada, 88), (Mdkinen, 96), (Sempere & Garcia, 94)
o Same trick as in the previous slide

e Linear Deterministic Languages
(de la Higuera & Oncina, 02)

o Rules of shape 4 — aZv+i
e A— alfv rules deterministic in a

39

. positive skeletons?

Some classes transposed from reqular
languages to tree languages and then to
context free

» k-testable tree languages (Knuutila, 93)
o (Fernau, 02)

o (Ishizaka, 89)

o (Yokomori, 91)

40

Présentateur
Commentaires de présentation
Habría que mencionar cuales son las calses que identifican Fernau, Ishizaka y Yokomori.

.adistribution?

Stochastic Deterministic Linear Languages
(de la Higuera & Oncina, 03)

o Identification of the structure

o Polynomial update time

41

Présentateur
Commentaires de présentation
¿Porqué no hace bien la guionización?

... Queries?

Simple Deterministic Languages
(Ishizaka, 89)

e Grammar:
rules with shape 4 —> a+ af+ a

w _n

deterministic in "a

e Queries:.
membership queries
extended equivalence queries

42

Can we PAC learn
context free
languages from ...

... positive and negative
examples?

NO,
o If wusual cryptographic rules
apply:
(Kearns & Valiant, 94)

... positive examples?

NO,

 a consequence of the previous result

45

» because regular languages cannot be learned ...

... positive skeletons?

NO,

46

Présentateur
Commentaires de présentation
¿Estas seguro de esto? En el caso de cadenas no pasa si restringimos el típo de esqueletos.

... positive skeletons and negative
examples?

probably NO,
o if usual cryptographic rules apply
It should be a direct consequence of

(Kearns & Valiant, 94)

3 “Pragmatic”
Learning

Many different ideas:
Incremental learning
MODL principle
Genetic/evolutionary algorithms
Reversing the parser
Tree automata learning
Merging

48

3.1 SEQUITUR

(http://sequitur.info/)
(Neville Manning & Witten, 97)
Idea: construct a ¢F grammar from a very
long string w, such that L(&)={w}
No generalization
Linear time (+/-)
Good compression rates

The grammar with respect to the string:
Each rule has to be used at least twice

There can be no sub-string of length 2
that appears twice

Principle

Examples

S—abcdbc S —aAdA
A —bc
S—AaA
A —aab
S—aabaaab
S—AbAab

A —aa

abcabdabcabd

abcabdabcabd

In the beginning, God created the heavens and
earth.

And the earth was without form, and void; |aF
darkness was upon the face of the deep. And'the
Spirit of God moved upon the face of the waters.

And God said, Let there be light: and there was light.

And God saw the light, that it was good: and God
divided the light from the darkness.

And God called the light Day, and the darkness he
called Night. And the evening and the morning were
the first day.

And God said, Let there be a firmament in the midst
of the waters, and let it divide the waters from the
waters.

And God made the firmament, and divided the waters
which were under the firmament from the waters
which were above the firmament: and it was so.

And God called the firmament Heaven. And the
evening and the morning were the second day.

3

Ir - +t 1 = e o i o d -3 - (= e = = at = d +t 1 = The a=rFr = =1

= 3 o1 + T = = 3 »t 1 . = o + T = = 3 »» £t T W 3 = W it o=

131 Lt £ = = am . = —1od = oo i oo oz a 1o d oa - kk oese=m = W a3 =

11 oo Tt h = £ a o = = £ Tt 1 = e = oo & ood Tt 1 = = i ox=

i t+ = = == I s wE o= ol 11 B o T + T = F a = = —= F + 11 = w3t = xr =
- = o = o= ol = 3 i od . I. = Lt T T = = = == 1 i atrt = 3 1o

+t T = = = 3 = 1 i 3@ttt . = oo = = = 3 wer + 1 = 1 i a3ttt -

+= T at i = W 3 = Lo B I o 3 —1d (= B Lo R BT . N] += T = 1 i coamrt®

54

Sequitur options

e appending a symbol to rule S
e using an existing rule

e creating a new rule

e and deleting a rule

55

Results

On text:
» 2.82 pr
o compress 3.46 bpc
e gzip 3.25 bpc
o PPMC 2.52 pr

3.2 Using a simplicity bias

(Langley & Stromsten, 00)
Based on algorithm

Main characteristics:
o MDL principle
e Not characterizable
» Not tested on large benchmarks

57

Two learning operators

Creation of non terminals and rules

NP —->ART
NP —ART ADJ

- =

NP —-ART AP1
NP —-ART ADJ AP1
APl —

Merging two non terminals

NP ->ART AP1

NP -ART AP2
AP1 —- ADJ NOUN
APZ2 — ADJ AP1

v

NP ->ART
— ADJ NOUN
— ADJ

e Scoring functiont MDL pr/hc‘/g

161+2.,_ | dw)]
e Algorithm:

o find best merge that improves
current grammar

o if no such merge exists, find best
creation

e halt when no improvement

60

e On subsets of English grammars (15

rules, 8 non terminals, 9 terminals): 120
sentences to converge

e on (ab)™: all (15) strings of length < 30
e 0N : all (65) strings of length <12

Results

3.3 Context free grammar
iInduction with genetic/
evolutionary algorithms

e (Wyard, 91)

e (Dupont, 94)

e (Kammeyer & Belew, 96)

e (Sakakibara & Kondo, 99)

e (Sakakibara & Muramatsu, 00)

62

e Encoding a context free grammar
as a string such that after
crossovers and mutations the string
is still a grammar...

e Some ideas:

Fill up with junk dnha. (Kammeyer &
Belew, 96)

A grammar is a partition. Encode the
partition)

Main issue

11,2,6§{3}14,51{7,91 18} 112331454

12,61 {3} {41 {5,7,9} {8} 112341454

3.4 Reversible CFGs

Definition: A context-free grammar
is reversibl/e if the following two
conditions hold.

The First Condition

Context-free grammars
If there exist productions of the form
A > aBband A > aCb then B = C.

Regular grammars
If there exist productions of the
form A > aBand A > aC then B = C.

The Second Condition

Context-free grammars
If there exist productions of the form
A-> aand B> athen A= B

Regular grammars

If there exist productions of the form
A 2> aand B> aand there exists a
string v that is a A-leader of both A
and Bthen A= B

Sakakibara’'s K-RI Algorithm

Given: a sample of strings Sin the
language of some reversible

context-free grammar and their
unlabeled derivation trees

Identify: the smallest reversible
context-free language containing S

68

Labeled Derivation Trees

S
/\
a A
/\
A b
/\

Unlabeled Derivation Trees

9

/\

a ?
/\
. b

Labelling UDTs

S
/\
a Nl
/\
N, b
/\

a b

Converting to Productions

S
/\I\' 590N1
N, b

Sakakibara’s RC Algorithm

G < empty context-free grammar

for each UDT in sample
assigh non-terminal N to root node
assign unique NT names to all other nodes
convert to list of productions and add to &

while & violates either condition for
reversibility

merge any pair of non-terminals causing a
violation

return &

An Example

? ?
T~ T~
a ? a ?
— T T~
a ’) b ?,
T~ |
b 2, A
| 2
? A _— ~_
T b ?
b ? T~
| b ?
A |

S->alN,
N;>aN,
N, > b Nj
N; > A

S->bN,
Ny > A

S > aNs
Ns > b N,
Ng > A

S>bN,
N, > b Ng
Ng > A

S ->alN;
N, >aN,
N, > b N;
N; > A

S->bN,
Ny > A

S > aNs
N5 > b N¢
N > A

S>bN,
N, > b Ny
Ng > A

S ->alN;
N, >aN,
N, > b N;
N; > A

S > b Nj

S > aNs
N5 > b Nj

S>bN,
N, > b Nj

S > alN;
N; >aN,
N, > b N;
N; > A

S->bN;g

S > aNg
N5 > b Nj

S>bN,
N, > b Nj

S->alN,
N;>aN,
N, > b Nj
N; > A

S > aNs
N5 > b N

S->bN,g
N3 > b N

S>a$
S->bN,g
N; > b Nj
N; > A

L(G)=ab*

S>ad
S-> b N,
Ny > BN,
N; > A

L(G) = ab*

S>as
S>bS
S-> A

L(&) ={a, b}

Claim 1

Given a set of strings S from a zero-
reversible reqular language, RC(S) =

K-RL(5)

K-Reversible Context-Free
Grammars

Definition: The k-ancestors of non-
terminal A are the non-terminals that
can derive a string containing A in
exactly kA steps

Definition: The k-contexts of non-
terminal A are the strings that can be
derived from the k-ancestors of Ain k
steps augmented with their unlabeled
derivation trees .

K-Reversible Context-Free
Grammars

Definition: A context-free grammar is A-

reversible if the following two conditions

hold
° 1) If there exist productions of the form

A= aBband A > acbthen B= C

2) If there exist productions of the form
A > aand B> aand there exists a
string b that is a A-context of both A4
and Bthen A= B s

The KRCFG Algorithm

G = empty context-free grammar

for each UDT in sample
assigh non-terminal S to root node
assign uniqgue NT names to all other nodes
convert to list of productions and add to &

while & violates either condition for A-
reversibility
merge any pair of non-terminals causing a
violation

return &

87

Analysis

Theorem 1: KRCFG performs the least amount
of generalization (i.e. merging) required to

ensure that the grammar it returns is A-
reversible

Complexity: O(m k<l * p kec2)

* m = number of productions in original grammar

* n= number of non-terminals in original grammar
* ¢, ¢, are small

88

4 Applications

e Computational Biology

e Program synthesis, ILP, compiler
construction

e Language models, speech & NLP
e Document structure, XML

4.1 Secondary structure
predictions

e Why: find the secondary structure
e Concept: a F grammar

e Data: long tagged strings over a small
alphabet: (RNA)
o Difficulties:
only positive data : restrict to a subclass

of CF grammars, or use stochastic CF
grammars

e Bibliography: Sakakibara et a/ 94, Abe &
Mamitsuka 94

90

[
-

91

Combining stochastic CFGs and n-grams
over RNA sequences
(Salvador & Benedi 2002)

e CFGs to learn the structure and long
term dependencies

e bigrams for the local relations (non
structured part)

e Sakakibara's algorithm (minimum
reversible consistent CF6)

e Probablity estimation (inside-outside)

4.2 Inductive logic
programming

e Why: learn recursive programs
e Concept: tree automata and grammars

e Input: a transformation of examples and
background knowledge into strings (SLD
refutations, or terms)

93

e Difficulties:

getting the first order information into
strings/trees

regular grammars are very restricted
numeric data

post-transformation into a logic program

e Bibliography: Merlin, 6IFT (Bostrom, 95 &
96, Bernard & cdlh, 99)

94

GIFT

Expert

(Set of rules)

architecture of the system

Observations

Background
knowledge

O A N

Set
of typed terms

A\ n5\

ON &)
N _ O _
||

Tree
automaton

)\

Logic Program
stack(Argl) Y-

start(Argl,X),
p7(Argl,X).
start(X,X).
p7(Argl, [XILD :-
p3(Argl,Xx),
p6(Argl,L).
p7(Argl, [XILD :-
p5(Argl,Xx),
p6(Argl,L).
p7(Argl, [XILD :-
p3(Argl.Xx),
p7(Argl,L).
p3(Argl,0bj) :-

shape(Obj ,square) .

p5(Argl,0bj) :-
shape(Obj,
triangle).

p6(Argl, [1).

96

4.3 Natural Language
Processing

ME

7N

Det A" N,

/N

the N N

computer program

[MP {subs 0}
[Det [{bold the}]]
[Ad) {sups 8 +]]
[{notmla M subs 0F
[[{bold computer}]]

[M{{sans program)]]]]

97

System EMILE

(version 4.1.6, 2003) Marco Vervoort / Pieter
Adriaans

Entity Modeling Intelligent Learning Engine

e A context/expression pair is a sentence split
intfo 3 parts: John (makes) tea.

IS an expression
IS a context.

e Identifying contexts, expressions is what
EMILE is about.

e How? Through clustering algorithms

98

An example

the fox jumped. the dog jumped.

the quick brown fox jumped.

the lazy dog jumped.

the fox jumped over the dog.

the dog jumped over the fox.

the quick brown fox jumped over the dog.
the lazy dog jumped over the fox.

the fox jumped over the lazy dog.

the dog jumped over the quick brown fox.

the lazy dog jumped over the quick brown fox.

99

Result of Emile

e [0]>[18] dog jumped .

e [0]>the [4] jumped .

e [0]>[18] dog jumped over the [4].
e [O]>the [4] jumped over [18] dog .
o [4]>fox

e [4]>quick brown [4]

e [18]>the

e [18]>the lazy

100

System ABL

(van Zaanen, 00...)

e Uses alignments for grammar construction
e System for unsupervised learning

4.4 Structured documents:
XML

Extract XML schema (Chiidlovski 200x)

<book>
<part>
<chapter>
<sectl/>
<sect]>
<orderedlist numeration="arabic">
<listitem/>
<f:fragbody/>
</orderedlist>
</sect]>
</chapter>
</part>
</book>

102

DITD

Copied from
<IDOCTYPE NEWSPAPER [
<IELEMENT NEWSPAPER (ARTICLE+)>
<IELEMENT ARTICLE (HEADLINE BYLINE LEAD,BODY NOTES)>
<IELEMENT HEADLINE (#PCDATA)
<IELEMENT BYLINE (#PCDATA)> <IELEMENT LEAD (#PCDATA)>
<IELEMENT BODY (#PCDATA)>
<IELEMENT NOTES (#PCDATA)>
<IATTLIST ARTICLE AUTHOR CDATA #REQUIRED>
<IATTLIST ARTICLE EDITOR CDATA #IMPLIED>
<JATTLIST ARTICLE DATE CDATA #IMPLIED>
<JATTLIST ARTICLE EDITION CDATA #IMPLIED>
<IENTITY NEWSPAPER "Vervet Logic Times">
<IENTITY PUBLISHER "Vervet Logic Press">
<IENTITY COPYRIGHT "Copyright 1998 Vervet Logic Press">]>

103

http://www.vervet.com/

e Theoretical hardness of the polynomial
time learning issues

e determinism and linearity seem to play a
strong part

e algorithms and heuristics are based on
very clever ideas

e not enough comparable work

5 Conclusion

104

Perspectives

o Prototypes . —

e Clearly identifiable open problems

Benchmarks, some features that
one expects...

Small/large/very large alphabets (2, <20, xO 000)
All grammars/simple grammars
Languages or grammars (normal forms?)
Size
of data set
of grammars
e No help (only positive data)/some help:
Skeletons
Partial structure
Distribution
e Noise/no noise
e Recognition/tolerance

106

e Avoid having a repetition of the

DFA/stochastic DFA situation: no fixed
RPNI/Alergia around

o distribution of implementations is a
hecessity

e distributing your algorithm means extra
referencesl!

Prototypes

e Limits of learning from polynomial data?
Comparison between models

e A plausible model for polynomial identification
with probability 1 or something related to this...

e Find a problem solvable on strings for DFA but
not solvable on skeletons for ¢F&Gs/tree automata

Open problems (1)

108

e Provide an algorithm for the case of
learning a stochastic ¢F grammar from
strings

e Integrate the categorical grammars into
the picture

e Learn deterministic linear grammars (/e.
one turn deterministic push-down
automata)

Open problems (2)

109

	Learning context-free grammars
	Acknowledgements
	Outline
	1. Context free grammars
	What is a context free grammar?
	Example
	Derivations and derivation trees
	Why learn context free grammars (CFG)?
	Tree Grammars
	Example
	Skeletons and tree grammars
	Theory
	Expansiveness
	Ambiguity
	Equivalence problem revisited
	Practical issues: parsing
	2. Paradigms and results
	Identification in the limit
	Learning from positives examples
	What can we do?
	Can we learn in the limit context-free languages from …
	... positive examples?
	... positive and negative examples?
	... skeletons of positive examples?
	Important!
	Reversible context free languages
	... queries?
	Polynomial identification
	Can we learn polynomially in the limit context free languages from …
	... positive and negative examples?
	… positive skeletons?
	... positive and negative skeletons?
	... positive skeletons and negative examples?
	... the knowledge that the distribution is given by a stochastic context-free grammar?
	... And if we have the grammar also?
	… queries?
	Can we learn polynomially in the limit some subclasses of context-free languages from …
	... positive examples?
	... positive and negative examples?
	... positive skeletons?
	... a distribution?
	... Queries?
	Can we PAC learn context free languages from …
	… positive and negative examples?
	… positive examples?
	… positive skeletons?
	… positive skeletons and negative examples?
	3 “Pragmatic” Learning
	3.1 SEQUITUR
	Principle
	Examples
	abcabdabcabd�
	Diapositive numéro 53
	Diapositive numéro 54
	Sequitur options
	Results
	3.2 Using a simplicity bias
	Two learning operators
	Diapositive numéro 59
	Diapositive numéro 60
	Results
	3.3 Context free grammar induction with genetic/ evolutionary algorithms
	Main issue
	Diapositive numéro 64
	Diapositive numéro 65
	Diapositive numéro 66
	Diapositive numéro 67
	Diapositive numéro 68
	Diapositive numéro 69
	Diapositive numéro 70
	Diapositive numéro 71
	Diapositive numéro 72
	Diapositive numéro 73
	Diapositive numéro 74
	Diapositive numéro 75
	Diapositive numéro 76
	Diapositive numéro 77
	Diapositive numéro 78
	Diapositive numéro 79
	Diapositive numéro 80
	Diapositive numéro 81
	Diapositive numéro 82
	Diapositive numéro 83
	Diapositive numéro 84
	Diapositive numéro 85
	Diapositive numéro 86
	Diapositive numéro 87
	Diapositive numéro 88
	4 Applications
	4.1 Secondary structure predictions
	Diapositive numéro 91
	Combining stochastic CFGs and n-grams over RNA sequences�(Salvador & Benedi 2002)
	4.2 Inductive logic programming
	
	GIFT�architecture of the system
	4.3 Natural Language Processing
	System EMILE�(version 4.1.6, 2003) Marco Vervoort / Pieter Adriaans
	An example
	Result of Emile
	System ABL
	4.4 Structured documents: XML
	DTD
	5 Conclusion
	Perspectives
	Benchmarks, some features that one expects...
	Prototypes
	Open problems (1)
	Open problems (2)

