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1. Context free 
grammars
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What is a context free 
grammar?
A 4-tuple (Σ, S, V, P) such that:

Σ is the alphabet
V is a finite set of non terminals
S is the start symbol
P ∈ V × (V∪Σ)* is a finite set of rules
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Example

The Dyck1
 

grammar
(Σ, S, V, P)
Σ = {a, b}
V = {S}
P = {S → aSbS, S → λ }
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Derivations and derivation 
trees

S → aSbS
→ aaSbSbS
→ aabSbS
→ aabbS
→ aabb

a

a

b

b

S

SS

S

S

λ

λ

λ
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Why learn context free 
grammars (CFG)?

More expressive than regular grammars: all 
regular languages are context-free
next step up on the Chomsky hierarchy
allows to define more precise and 
expressive structure
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Tree Grammars

Similar to CFG
 

but the rules have the 
shape:

A →
a

B C …
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Example

Let P = { S → a, 
S →

 
, S →

 
}

+

a *

a a

+

S *

S S

+

S S

S

+

S S

*

S S
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Skeletons and tree grammars

Any context free grammar can be transformed 
into a tree grammar that produces skeletons

A tree automaton:

S →
 

λ

S → σ

a S b S

S → σ

S →
 

aSbS
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Theory

It is made harder by the hardness 
of various problems over CF

 grammars:
Expansiveness
Ambiguity
Undecidability of the equivalence 
problem

Présentateur
Commentaires de présentation
No se a que te refieres con que aprender de solo muestras positivas es “hard”. Si te refieres a aprendr CFG es imposible!!
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Expansiveness

T0 → T1
 

T1
 

+...
T1 → T2

 

T2
 

+...

Tn
 

→ a

LG
 

(T0
 

)={a2n}

String
 

a2n is 
probable

 
but 

very long. 
What about 
complexity?
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Ambiguity

S → S*S, S → a, S → b

Where does a*b*b come from?
Do we really want to learn languages? 
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Equivalence problem revisited

When trying to learn a grammar, 
are we not attempting to find some 
normal form?
Does that not seem difficult when 
the equivalence problem is 
undecidable?
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Practical issues: parsing

CYK, complexity: O(n3)

Earley, complexity: O(n3)

Valiant, complexity: O(n2.81)
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2. Paradigms and 
results
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Identification in the limit
The examples are provided in sequence
For each new example the learning 
algorithm must provide a hypothesis
Success if the sequence of hypotheses 
converges

Présentateur
Commentaires de présentation
Añadir un dibujo
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Learning from positives examples

It is impossible to identify in the limit 
any super-finite class of language from 
positive examples only (Gold, 67)
A super-finite class of languages 
includes:

all the finite languages and 
at least an infinite language
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What can we do?

Use of some additional help:
negative data
access to oracles
knowledge of the structure
belief there is a structured distribution

Avoid super-finite classes of languages
Combinations of both ideas
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Can we learn in the 
limit context-free 

languages from …
Complexity does not matter!
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... positive examples?

NO (Gold, 67)
the class of context free languages is super-
finite
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... positive and negative 
examples?

YES (Gold, 67)
by an enumeration procedure:

1.
 

order all the CFG in a list
2.

 

search the list and return the first grammar 
consistent with the data

Complexity is O(⏐V⏐⏐P⏐⏐V⏐

 
) 
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... skeletons of positive examples?

NO, as a consequence of (Gold, 67)
the class of the tree languages that represent 
skeletons is super-finite

YES, (Sakakibara, 92)

if the skeletons come from a reversible
context free grammar (normal form)
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Important!

In the first case we want to identify a 
grammar that matches a set of trees
In the second case we will need trees that 
conform to the unknown grammar

Crucial question… what are we learning? 
Grammars or languages?
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Reversible context free 
languages

Deterministic bottom-up / top-down
A → α and B → α ⇒ A=B
A → αBβ and A → αCβ ⇒ B=C
Algorithm

Build the grammar that only accepts the 
sample
Merge pair of non terminals that violate 
some of the previous rules
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... queries?

Not well known!
The most used queries are:

Membership queries
Equivalence queries

Note that an equivalence query might be 
non computable.

Queries are usually introduced to deal 
with complexity issues…

Présentateur
Commentaires de présentation
¿Donde?
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Polynomial identification

There are several definitions:
(Pitt, 89) and (Yokomori, 91)

Polynomial update time
Polynomial number of hypothesis changes
Polynomial number of implicit prediction errors 
(Yokomori)

In polynomial time and data (cdlh, 97)
Polynomial update time
Polynomial characteristic sample
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Can we learn polynomially 
in the limit context free 

languages from …
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... positive and negative 
examples?

NO,
if usual cryptographic rules apply
(Pitt and Warmuth, 88)

In the polynomial time and data
 

framework, 
context-free and linear*

 
languages are not 

identifiable (cdlh, 97)

* the rules have the shape: A → vBw, A → v
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… positive skeletons?

YES,
provided that the grammar is written in 
reversible normal form (Sakakibara, 92)
even though the regular languages are not 
identifiable from positive skeletons!!!
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... positive and negative 
skeletons?

YES,
it is a special case of learning 
tree grammars from positive and 
negative examples 
(García

 
& Oncina, 93 )
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... positive skeletons and negative 
examples?

YES
with a slight modification of the 
previous algorithm
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... the knowledge that the 
distribution is given by a 
stochastic context-free grammar?

There is not even a sensible definition of 
what this can be
The number of examples should be very 
large in order to have information about 
the existence of a rule with a very low 
probability
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... And if we have the grammar 
also?

Not known! 
There are some heuristics...

Expectation maximization
Inside-Outside
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… queries?

YES, 
provided the grammar is written 
in reversible normal form 

(Sakakibara, 90) 
NO,

in general
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Can we learn polynomially 
in the limit some 

subclasses of context-free 
languages from …
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... positive examples?
Subclasses of even linear languages
(Takada, 88), (Sempere

 
& García, 94), 

(Mäkinen,96)
Rules with shape A → aBb + a +λ
The trick is to transform A → aBb into 
A →[ab]B, then we have a regular language

Very simple grammars (Yokomori, 91)
Rules with shape A → a + aB + aBC
Globally deterministic in “a ”
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... positive and negative 
examples?

Even Linear Languages 
(Takada, 88), (Mäkinen, 96), (Sempere

 
& García, 94)

Same trick as in the previous slide
Linear Deterministic Languages 
(de la Higuera

 
& Oncina, 02)

Rules of shape A → aBv +λ
A → aBv rules deterministic in a



40

... positive skeletons?

Some classes transposed from regular 
languages to tree languages and then to 
context free

k-testable tree languages (Knuutila, 93)
(Fernau, 02)
(Ishizaka, 89)
(Yokomori, 91)

Présentateur
Commentaires de présentation
Habría que mencionar cuales son las calses que identifican Fernau, Ishizaka y Yokomori.
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... a distribution?

Stochastic Deterministic Linear Languages
(de la Higuera

 
& Oncina, 03)

Identification of the structure
Polynomial update time

Présentateur
Commentaires de présentation
¿Porqué no hace bien la guionización?
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... Queries?

Simple Deterministic Languages
(Ishizaka, 89)

Grammar:
rules with shape A → a + aB + aBC
deterministic in “a”

Queries:
membership queries
extended equivalence queries
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Can we PAC learn 
context free 

languages from …
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… positive and negative 
examples?

NO,
If usual cryptographic rules 
apply:
(Kearns & Valiant, 94)
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… positive examples?

NO,
a consequence of the previous result
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… positive skeletons?

NO,
because regular languages cannot be learned …

Présentateur
Commentaires de présentation
¿Estas seguro de esto? En el caso de cadenas no pasa si restringimos el típo de esqueletos.
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… positive skeletons and negative 
examples?

probably NO,
if usual cryptographic rules apply
It should be a direct consequence of 
(Kearns & Valiant, 94)
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3 “Pragmatic” 
Learning

Many different ideas:
Incremental learning
MDL principle
Genetic/evolutionary algorithms
Reversing the parser
Tree automata learning
Merging
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3.1 SEQUITUR

(http://sequitur.info/)
(Neville Manning & Witten, 97)

Idea: construct a CF grammar from a very 
long string w, such that L(G)={w}

No generalization
Linear time (+/-)
Good compression rates
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Principle

The grammar with respect to
 

the string:
Each rule has to be used at least twice
There can be no sub-string of length 2 
that appears twice
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Examples

S→abcdbc

S→AbAab
A →aa

S →aAdA
A →bc

S→aabaaab

S→AaA
A →aab
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abcabdabcabd
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In the beginning, God created the heavens and the 
earth.

And the earth was without form, and void; and 
darkness was upon the face of the deep. And the 
Spirit of God moved upon the face of the waters. 

And God said, Let there be light: and there was light. 
And God saw the light, that it was good: and God 

divided the light from the darkness. 
And God called the light Day, and the darkness he 

called Night. And the evening and the morning were 
the first day. 

And God said, Let there be a firmament in the midst 
of the waters, and let it divide the waters from the 
waters. 

And God made the firmament, and divided the waters 
which were under the firmament from the waters 
which were above the firmament: and it was so. 

And God called the firmament Heaven. And the 
evening and the morning were the second day. 
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appending a symbol to rule S
using an existing rule
creating a new rule
and deleting a rule

Sequitur options
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Results

On text:
2.82 bpc
compress 3.46 bpc
gzip 3.25 bpc
PPMC 2.52 bpc
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3.2 Using a simplicity bias 
(Langley & Stromsten, 00)

Based on algorithm GRIDS (Wolff, 82)

Main characteristics:
MDL principle
Not characterizable
Not tested on large benchmarks
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Two learning operators
Creation of non terminals and rules

NP →ART ADJ NOUN
NP →ART ADJ ADJ NOUN

NP →ART AP1
NP →ART ADJ AP1
AP1 → ADJ NOUN
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Merging two non terminals
NP →ART AP1
NP →ART AP2
AP1 → ADJ NOUN
AP2 → ADJ AP1

NP →ART AP1
AP1 → ADJ NOUN
AP1 → ADJ AP1



60

Scoring function: MDL principle: 
⎪G⎪+Σw∈T ⎪d(w)⎪
Algorithm: 

find best merge that improves 
current grammar
if no such merge exists, find best 
creation
halt when no improvement
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Results

On subsets of English grammars (15 
rules, 8 non terminals, 9 terminals): 120 
sentences to converge
on (ab)*: all (15) strings of length ≤ 30
on Dyck1: all (65) strings of length ≤ 12
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3.3 Context free grammar 
induction with genetic/ 
evolutionary algorithms

(Wyard, 91)
(Dupont, 94)
(Kammeyer & Belew, 96)
(Sakakibara & Kondo, 99)
(Sakakibara & Muramatsu, 00)
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Main issue

Encoding a context free grammar 
as a string such that after 
crossovers and mutations the string 
is still a grammar...
Some ideas:

Fill up with junk dna: (Kammeyer & 
Belew, 96)
A grammar is a partition. Encode the 
partition
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{1,2,6}{3}{4,5}{7,9}{8} 112331454

112341454{1,2,6}{3}{4}{5,7,9}{8}
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3.4 Reversible CFGs

Definition:
 

A context-free grammar 
is reversible if the following two 
conditions hold.
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The First Condition

Regular grammars
If there exist productions of the 
form A aB and A aC then B = C. 

Context-free grammars
If there exist productions of the form 
A aBb and A aCb then B = C.
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The Second Condition

Regular grammars
If there exist productions of the form 
A a and B a and there exists a 
string v that is a k-leader of both A
and B then A = B

Context-free grammars
If there exist productions of the form   
A a and B a then A = B
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Sakakibara’s K-RI Algorithm

Given: a sample of strings S in the 
language of some reversible 
context-free grammar and their 
unlabeled derivation trees

Identify: the smallest reversible 
context-free language containing S
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Labeled Derivation Trees

S
a A

bA
ba
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Unlabeled Derivation Trees

?
a ?

b?
ba
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Labelling UDTs

S
a N1

bN2

ba
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Converting to Productions

S
a N1

bN2

ba

S a N1

N1 N2 b
N2 a b
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Sakakibara’s RC Algorithm

G ←
 

empty context-free grammar
for each UDT in sample

assign non-terminal N to root node
assign unique NT names to all other nodes
convert to list of productions and add to G

while G violates either condition for 
reversibility

merge any pair of non-terminals causing a 
violation

return G
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An Example
?

a

b

λ

b

b

λ

b

?

a

a

b

λ

?

?

?

?

?

?

?

?

?

λ

?
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S

a N5

b N6

λ

S

b N7

b N8

λ

S

b N4

λ

S

a N1

a N2

b N3

λ
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S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N6

N6 λ

S b N7

N7 b N8

N8 λ
S b N4

N4 λ
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S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N6

N6 λ

S b N7

N7 b N8

N8 λ
S b N4

N4 λ
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S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N3

S b N7

N7 b N3S b N3
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S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N3

S b N7

N7 b N3S b N3
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S a N1

N1 a N2

N2 b N3

N3 λ

S a N5

N5 b N3

S b N3

N3 b N3
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S a S
S b N3

N3 b N3

N3 λ

L(G) = a*b+
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S a S
S b N3

N3 b N3

N3 λ

L(G) = a*b+
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S a S
S b S
S λ

L(G) = {a, b}*
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Claim 1

Given a set of strings S from a zero-
 reversible regular language, RC(S) = 

K-RL(S)
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K-Reversible Context-Free 
Grammars

Definition:
 

The k-ancestors of non-
 terminal A are the non-terminals that 

can derive a string containing A in 
exactly k steps
Definition:

 
The k-contexts of non-

 terminal A are the strings that can be 
derived from the k-ancestors of A in k

 steps augmented with their unlabeled 
derivation trees
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Definition:
 

A context-free grammar is k-
 reversible if the following two conditions 

hold
1)

 
If there exist productions of the form 
A aBb and A aCb then B = C

2)
 

If there exist productions of the form 
A a and B a and there exists a 
string b that is a k-context of both A
and B then A = B

K-Reversible Context-Free 
Grammars
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The KRCFG Algorithm
G = empty context-free grammar
for each UDT in sample

assign non-terminal S to root node
assign unique NT names to all other nodes
convert to list of productions and add to G

while G violates either condition for k-
 reversibility

merge any pair of non-terminals causing a 
violation

return G
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Analysis

Theorem 1:
 

KRCFG performs the least amount 
of generalization (i.e. merging) required to 
ensure that the grammar it returns is k-

 reversible

Complexity:
 

O(m k+c1
 

* n k+c2)
• m = number of productions in original grammar
• n = number of non-terminals in original grammar
• c1

 

, c2
 

are small
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4 Applications

Computational Biology
Program synthesis, ILP, compiler 
construction
Language models, speech & NLP
Document structure, XML
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4.1 Secondary structure 
predictions

Why: find the secondary structure
Concept: a CF grammar
Data: long tagged strings over a small 
alphabet: (RNA)
Difficulties:

only positive data : restrict to a subclass 
of CF grammars, or use stochastic CF
grammars

Bibliography: Sakakibara et al. 94, Abe & 
Mamitsuka 94
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Combining stochastic CFGs and n-grams 
over RNA sequences 
(Salvador & Benedi 2002)

CFGs to learn the structure and long 
term dependencies
bigrams for the local relations (non 
structured part)
Sakakibara’s algorithm (minimum 
reversible consistent CFG)
Probablity estimation (inside-outside)
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4.2 Inductive logic 
programming 

Why: learn recursive programs
Concept: tree automata and grammars
Input: a transformation of examples and 
background knowledge into strings (SLD
refutations, or terms)
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Difficulties:
getting the first order information into 
strings/trees
regular grammars are very restricted
numeric data
post-transformation into a logic program

Bibliography: Merlin, GIFT (Böstrom, 95 & 
96, Bernard & cdlh, 99)
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GIFT 
architecture of the system

ObservationsObservations
EE++ EE--

Background Background 
knowledgeknowledge

Set of Set of 
termsterms

ExpertExpert
(Set of rules)(Set of rules)

Tree Tree 
automatonautomaton

Logic ProgramLogic Program
stack(Arg1) :-

start(Arg1,X), 
p7(Arg1,X).

start(X,X).
p7(Arg1,[X|L]) :-

p3(Arg1,X), 
p6(Arg1,L).

p7(Arg1,[X|L]) :-
p5(Arg1,X),
p6(Arg1,L).

p7(Arg1,[X|L]) :-
p3(Arg1,X),
p7(Arg1,L).

p3(Arg1,Obj) :-

shape(Obj,square).
p5(Arg1,Obj) :-

shape(Obj,
triangle).

p6(Arg1,[]).

Set Set 
of typed termsof typed terms
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4.3 Natural Language 
Processing
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System EMILE 
(version 4.1.6, 2003) Marco Vervoort / Pieter 
Adriaans

Entity Modeling Intelligent Learning Engine
A context/expression  pair is a sentence split 
into 3 parts: John (makes) tea.

makes is an expression
John (.) tea is a context.

Identifying contexts, expressions is what 
EMILE is about. 
How? Through clustering algorithms
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An example
the fox jumped. the dog jumped.
the quick brown fox jumped.
the lazy dog jumped.
the fox jumped over the dog.
the dog jumped over the fox.
the quick brown fox jumped over the dog.
the lazy dog jumped over the fox.
the fox jumped over the lazy dog.
the dog jumped over the quick brown fox.
the lazy dog jumped over the quick brown fox.
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Result of Emile

[0] [18] dog jumped .
[0] the [4] jumped .
[0] [18] dog jumped over the [4] .
[0] the [4] jumped over [18] dog .
[4] fox
[4] quick brown [4] 
[18] the 
[18] the lazy
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System ABL

(van Zaanen, 00…)

Uses alignments for grammar construction
System for unsupervised learning
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4.4 Structured documents: 
XML

Extract XML schema (Chiidlovski
 

200x)

<book>
<part>
<chapter>
<sect1/>
<sect1>
<orderedlist

 
numeration="arabic">

<listitem/>
<f:fragbody/>
</orderedlist>
</sect1>
</chapter>
</part>
</book>
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DTD
Copied from http://www.vervet.com/

<!DOCTYPE NEWSPAPER [
<!ELEMENT NEWSPAPER (ARTICLE+)> 
<!ELEMENT ARTICLE (HEADLINE,BYLINE,LEAD,BODY,NOTES)> 
<!ELEMENT HEADLINE (#PCDATA)> 
<!ELEMENT BYLINE (#PCDATA)> <!ELEMENT LEAD (#PCDATA)> 
<!ELEMENT BODY (#PCDATA)> 
<!ELEMENT NOTES (#PCDATA)>
<!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED> 
<!ATTLIST ARTICLE EDITOR CDATA #IMPLIED> 
<!ATTLIST ARTICLE DATE CDATA #IMPLIED> 
<!ATTLIST ARTICLE EDITION CDATA #IMPLIED>
<!ENTITY NEWSPAPER "Vervet

 
Logic Times"> 

<!ENTITY PUBLISHER "Vervet
 

Logic Press"> 
<!ENTITY COPYRIGHT "Copyright 1998 Vervet

 
Logic Press">]>

http://www.vervet.com/


104

5 Conclusion

Theoretical hardness of the polynomial 
time learning issues
determinism and linearity seem to play a 
strong part
algorithms and heuristics are based on 
very clever ideas
not enough comparable work
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Perspectives 

Tasks
Benchmarks
Prototypes
Clearly identifiable open problems

Bottlenecks
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Benchmarks, some features that 
one expects...

Small/large/very large alphabets (2, <20, x0 000)
All grammars/simple grammars 
Languages or grammars (normal forms?)
Size

of data set
of grammars

No help (only positive data)/some help:
Skeletons
Partial structure
Distribution

Noise/no noise
Recognition/tolerance
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Prototypes

Avoid having a repetition of the 
DFA/stochastic DFA situation: no fixed 
RPNI/Alergia around
distribution of implementations is a 
necessity
distributing your algorithm means extra 
references!!!
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Open problems (1)
Limits of learning from polynomial data? 
Comparison between models
A plausible model for polynomial identification 
with probability 1 or something related to this…
Find a problem solvable on strings for DFA but 
not solvable on skeletons for CFGs/tree automata
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Open problems (2)
Provide an algorithm for the case of 
learning a stochastic CF grammar from 
strings
Integrate the categorical grammars into 
the picture
Learn deterministic linear grammars (i.e.
one turn deterministic push-down 
automata)
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