

UMR CNRS 6241 Université de Nantes Ecole des Mines de Nantes

# Learning from an informant

#### Colin de la Higuera University of Nantes



1







#### Acknowledgements



- Laurent Miclet, Jose Oncina and Tim Oates for previous versions of these slides.
- Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe Ezequel, Henning Fernau, Thierry Murgue, Franck Thollard, Enrique Vidal, Frédéric Tantini,...
- List is necessarily incomplete. Excuses to those that have been forgotten.

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Chapter 12 (and part of 14)



### Outline

- 1. The rules of the game
- 2. Basic elements for learning DFA
- 3. Gold's algorithm
- 4. RPNI
- 5. Complexity discussion
- 6. Heuristics
- 7. Open questions and conclusion



#### Motivation



- We are given a set of strings S<sub>1</sub> and a set of strings S<sub>1</sub>
- Goal is to build a classifier
- This is a traditional (or typical) machine learning question
- How should we solve it?



#### Ideas



- Use a distance between strings and try k-NN
- Embed strings into vectors and use some off-the-shelf technique (decision trees, SVMs, other kernel methods)

#### **Alternative**



- Suppose the classifier is some grammatical formalism
- Thus we have L and  $\Sigma^* \setminus L$



#### **Informed presentations**



- An *informed* presentation (or an informant) of  $L \subseteq \Sigma^*$  is a function  $f : \mathbb{N} \to \Sigma^* \times \{-,+\}$  such that  $f(\mathbb{N})=(L,+)\cup(\overline{L},-)$
- f is an infinite succession of all the elements of  $\Sigma^*$  labelled to indicate if they belong or not to L.

## **Obviously many possible candidates**



- Any Grammar G such that
  - $S_{+} \subseteq L(G)$
  - S₋ ∩ L(*G*) =∅
- But there is an infinity of such grammars!

#### **Structural completeness**



• (of *S*<sub>+</sub> *re* a *DFA*)

each edge is used at least once each final state accepts at least one string

 Look only at DFA for which the sample is structurally complete!

#### **Example**



• *S*<sub>+</sub>={*aab*, *b*, *aaaba*, *bbaba*}





#### • *S*<sub>+</sub>={*aab*, *b*, *aaaba*, *bbaba*} ...



## Defining the search space by structural completeness



(Dupont, Miclet, Vidal 94)

- the basic operation: merging two states
- a bias on the concepts : structural completeness of the positive sample  $S_+$
- a theorem: every biased solution can and can only be obtained by merging states in  $CA(S_{+})$
- the search space is a partition lattice.





#### **The partition lattice**



- Let E be a set with *n* elements
- The number of partitions of *E* is given by the Bell number

$$\begin{cases} \omega(0) = 1 \\ \omega(n+1) = \sum_{p=0}^{n} C_{n}^{p} \cdot \omega(n) \\ \omega(16) = 10\ 480\ 142\ 147 \end{cases}$$

### **Regular inference as search**



- another result: the smallest *DFA* fitting the examples is in the lattice constructed on  $PTA(S_{+})$
- generally, algorithms would start from  $PTA(S_{+})$  and explore the corresponding lattice of solutions using the merging operation.  $S_{-}$  is used to control the generalization.



## **2 Basic structures**





#### Two types of final states

 $S_{+}=\{\lambda, aaa\}$  $S_{-}=\{aa, aaaaaa\}$ 



#### 1 is accepting 3 is rejecting What about state 2?



#### What is determinism about?



#### The prefix tree acceptor



- The smallest tree-like DFA consistent with the data
- Is a solution to the learning problem
- Corresponds to a rote learner



#### From the sample to the PTA





 $S_{+}=\{\lambda, aaa, aaba, ababa, bb, bbaaa\}$  $S_{-}=\{aa, ab, aaaa, ba\}$ 

#### **Red**, **Blue** and White states



-Red states are confirmed states -Blue states are the (non Red) successors of the Red states -White states are the others





Suppose we want to merge state 3 with state 2





#### First disconnect 3 and reconnect to 2





Then fold subtree rooted in 3 into the DFA starting in 2





Then fold subtree rooted in 3 into the DFA starting in 2



#### **Other search spaces**



# an augmented *PTA* can be constructed on both $S_{+}$ and $S_{-}$ (Coste 98, Oliveira 98)

- but not every merge is possible
- the search algorithms must run under a set of dynamic constraints

### State splitting

Searching by splitting

• start from the onestate universal automaton, keep constructing DFAcontrolling the search with  $\langle S_+, S_- \rangle$ 





• That seems a good idea... but take  $a^{5*}$ . What 4 (or 3, 2, 1) state automaton is a decent approximation of  $a^{5*}$ ?



## **3 Gold's algorithm**

E. M. Gold. Complexity of automaton identification from given data. *Information and Control*, 37:302–320, 1978.

### Key ideas



- Use an observation table
- Represent the states of an automaton as strings, prefixes of the strings in the learning set
- Find some incompatibilities between these prefixes due to separating suffixes
- This leads to equivalent prefixes
- Invent the other equivalences



#### **Strings as states**





### **Incompatible prefixes**

- *S*<sub>+</sub>={*aab*}
- *S*<sub>-</sub>={*bab*}
- Then clearly there are at least 2 states, one corresponding to *a* and another to *b*.
### **Observation table**



 The information is organised in a table <STA, EXP, OT> where:

- $RED \subseteq \Sigma^*$  is the set of states
- BLUE ⊆ ∑\* is the set of transitions
  BLUE=(RED.∑)\RED
- $EXP \subseteq \Sigma^*$  is the *experiment set*
- OT: (STA=RED∪BLUE)×EXP →{0,1,\*} such that:

$$\mathcal{OT}[u][e]$$
 = 1 if  $ue \in S_{\downarrow}$   
0 if  $ue \in S_{\downarrow}$   
\* otherwise

(



### An observation table





### Meaning









### Redundancy





### **DFA consistent with a table**

|          | λ    | a  |                                  |
|----------|------|----|----------------------------------|
| λ        | 1    | 0  |                                  |
| a        | 0    | *  | b a a                            |
| <i>b</i> | 1    | *  | 7                                |
| aa       | *    | 0  | a,b                              |
| ab       | 1    | 0  |                                  |
|          |      |    |                                  |
|          |      |    | b a                              |
| E        | Both | DF | A are consistent with this table |

### **Closed table without holes**



- Let u∈ RED∪BLUE and let OT[u][e] denote a cell
  OT[u] denotes the row indexed by u
- We say that the table is *closed if*  $\forall t \in BLUE, \exists s \in RED : OT[t] = OT[s]$
- We say that the table has *no holes if*  $\forall u \in RED \cup BLUE, \forall e \in CT[u][e] \in \{0,1\}$

### This table is closed







### This table is not closed



Zadar, August 2010

### An equivalence relation



Let *«RED,EXP,OT»* be a closed table and with no holes. Consider the equivalence relation over *STA*:

 $OT[s_1] = OT[s_2] \land \forall a \in \Sigma OT[s_1a] = OT[s_2a]$ 

Class of s is denoted by [s] (also!)



### **Equivalent prefixes**



prefixes  $\lambda$  and bare equivalent since  $OT[\lambda]=OT[b]$ 

## Building an automaton from a table



- We define  $A(\langle STA, EXP, OT \rangle) = (\Sigma, Q, \delta, q_0, F)$ as follows:
  - $Q = \{ [s] : s \in RED \}$
  - *q*<sub>0</sub> = [\lambda]
  - F = {[ue]: OT[u][e] = 1}
  - δ([S₁], a)=
    - $[s_2a]$  if  $\exists s_2 \in [s_1]$ .  $s_2a \in RED$
    - any [s]:  $s \in RED \land OT[s] = OT[s_1a]$





### **Compatibility Theorem:**



- Let <STA, EXP, OT> be an observation table closed and with no holes
- If STA is prefix-complete and EXP is suffix-complete then A(<STA,EXP,OT>) is compatible with the data in <STA,EXP,OT>

### Example

- *RED* = [λ]
- *Q* = {[λ]}
- $q_0 = [\lambda]$
- *F* = {[λ]}







### Exercise



## • Build a DFA from either of these two tables



## Building the initial table from a sample



- Given a sample 5 and a set of strings (*RED*) prefix-complete, it is always possible to select a set of experiments *E* such that the table *<STA,E,OT>* contains all the information in *S*
- But usually this table is going to have holes



### **Obviously different rows**

Let  $s_1, s_2 \in RED \cup BLUE$ we say that  $OT[s_1]$  is obviously different from  $OT[s_2]$  if

### ∃*e*∈*E*:

 $OT[s_1][e], OT[s_2][e] \in \{0,1\}$  and  $OT[s_1][e] \neq OT[s_2][e]$ 

If  $\exists t \in BLUE$  such that OT[t]is obviously different from any OT[s], ( $s \in RED$ ) then no filling of holes in  $\langle RED, EXP, OT \rangle$  can produce a closed table.



λ a λ a b \* \* aaab ab is OD with each s

### Algorithm



 $RED \leftarrow \{\lambda\}$ build  $\langle RED, E, OT \rangle$  with E suffix-complete while  $\exists x \in BLUE$ : OT[x] is OD do add x to REDupdate BLUEupdate  $\langle STA, E, OT \rangle$ 

# $\begin{array}{ll} Q \leftarrow RED & \text{There can be several} \\ q_0 \leftarrow \lambda & \text{such } t' \\ F \leftarrow \{t \in RED : OT[t][\lambda] = 1\} \\ \delta(t,a) \leftarrow ta \text{ if } ta \in RED \\ t' \text{ if } t' \in RED \text{ and not } OD \end{array}$

if <*STA,EXP,OT>* is incompatible with *S*, return the PTA

### **Example run**

- *S*<sub>+</sub>={*bb*, *abb*, *bba*, *bbb*}
- *S\_*={*a*, *b*, *aa*, *ba*, *bab*}



|    | λ | а | b | aa | ab | ba | bb | abb | bab | bba | bbb |  |
|----|---|---|---|----|----|----|----|-----|-----|-----|-----|--|
| λ  | * | 0 | 0 | 0  | *  | 0  | 1  | 1   | 0   | 1   | 1   |  |
| b  | 0 | 0 | 1 | *  | 0  | 1  | 1  | *   | *   | *   | *   |  |
| а  | 0 | 0 | * | *  | *  | *  | 1  | *   | *   | *   | *   |  |
| ba | 0 | * | 0 | *  | *  | *  | *  | *   | *   | *   | *   |  |
| bb | 1 | 1 | 1 | *  | *  | *  | *  | *   | *   | *   | *   |  |
|    |   |   |   |    |    |    |    |     |     |     |     |  |

1) We promote line b

2) We expand the table, adding rows ba and bb 3) bb is OD

|     | λ | а | b | aa | ab | ba | bb | abb | bab | bba | bbb |  |
|-----|---|---|---|----|----|----|----|-----|-----|-----|-----|--|
| λ   | * | 0 | 0 | 0  | *  | 0  | 1  | 1   | 0   | 1   | 1   |  |
| b   | 0 | 0 | 1 | *  | 0  | 1  | 1  | *   | *   | *   | *   |  |
| bb  | 1 | 1 | 1 | *  | *  | *  | *  | *   | *   | *   | *   |  |
| а   | 0 | 0 | * | *  | *  | *  | 1  | *   | *   | *   | *   |  |
| ba  | 0 | * | 0 | *  | *  | *  | *  | *   | *   | *   | *   |  |
| bba | 1 | * | * | *  | *  | *  | *  | *   | *   | *   | *   |  |
| bbb | 1 | * | * | *  | *  | *  | *  | *   | *   | *   | *   |  |

### 1) We promote line bb

2) We expand the table, adding rows *bba* and *bbb*3) We construct the automaton as no line is OD <sub>Zadar, August 2010</sub>



|     | λ | а | b |  |
|-----|---|---|---|--|
| λ   | * | 0 | 0 |  |
| b   | 0 | 0 | 1 |  |
| bb  | 1 | 1 | 1 |  |
| a   | 0 | 0 | * |  |
| ba  | 0 | * | 0 |  |
| bba | 1 | * | * |  |
| bbb | 1 | * | * |  |



Wild guess!



The automaton is inconsistent. We shall have to return the *PTA* instead.

### But !



- $\mathbf{a}_{Gold}$  is deterministic: it takes deterministic decisions in order to solve the  $\ll$  filling holes  $\gg$  question
- In practice it will very often return the PTA

### Equivalence of problems



Let *RED* be a state test set prefix-complete, and *S* be a sample. Let  $\langle STA, EXP, OT \rangle$  be an observation table consistent with all the data in *S*, with *EXP* suffix-complete

The question:

Does there exist a DFA with the states of RED and compatible with 5?

### is equivalent to:

Can we fill the holes such that *<STA,EXP,OT>* is closed?

### Complexity



### The problem:

## is there a DFA with states in RED and compatible with S?

### is NP-Complete

### Corollary



Given S and a positive integer n, the question:

Is there a DFA with *n* states compatible with *S*?

is NP-Complete

### Properties of a<sub>Gold</sub>



- 1) the output is consistent with a sample S
- 2) **a**<sub>Gold</sub> identifies in the limit any regular language
- 3)  $\mathbf{a}_{Gold}$  works in time polynomial in |S|
- 4) if the size of the target is *n*, then there is a characteristic sample *CS* with |CS|=  $2n^{2}(|\Sigma|+1)$ , such that  $\mathbf{a}_{Gold}(S)$  produces the canonical acceptor for all  $S \supseteq CS$

### **Open questions**



- Can one fill the holes in a more "intelligent" way?
- How fast can we detect that a choice (for a filling) is good or bad?

### Exercise



- Run Gold's algorithm for the following data:
- *S*<sub>+</sub>={*a*, *abb*, *bab*, *babb*}
- *S*\_={*ab*, *bb*, *aab*, *b*, *aaaa*, *babb*}

### 4 RPNI

Regular Positive and Negative Grammatical Inference Inferring regular languages in polynomial time. Jose Oncina & Pedro García. Pattern recognition and image analysis, 1992

- RPNI is a state merging algorithm
- RPNI identifies any regular language in the limit
- RPNI works in polynomial time
- RPNI admits polynomial characteristic sets


- $A=PTA(S+); Blue = \{\delta(q_I, a): a \in \Sigma \};$ Red =  $\{q_I\}$
- While *Blue*≠Ø do
  - choose q from Blue
  - if  $\exists p \in Red$ : L(merge\_and\_fold(A, p, q)) $\cap S = \emptyset$ then  $A = merge_and_fold(A, p, q)$ else  $Red = Red \cup \{q\}$ Blue = { $\delta(q, a)$ :  $q \in Red$ } - {Red}



#### $S_{+}=\{\lambda, aaa, aaba, ababa, bb, bbaaa\}$



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



#### Try to merge 2 and 1



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



#### First merge, then fold



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



But now string aaaa is accepted, so the merge must be rejected, and state 2 is promoted



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



#### Try to merge 3 and 1



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



#### First merge, then fold



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



No counter example is accepted so the merge is kept



 $S_{=}$ {aa, ab, aaaa, ba}



Next possible merge to be checked is {4,13} with {1,3,6}



 $S_{=}$ {aa, ab, aaaa, ba}



Merged. Needs folding subtree in {4,13} with {1,3,6}



 $S_{=}$ {aa, ab, aaaa, ba}



#### But now aa is accepted



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



### So we try {4,13} with {2,10}



#### $S_{=}$ {aa, ab, aaaa, ba}

Negative string aa is again accepted. Since we have tried all Red for merging, state 4 is promoted.





 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



#### So we try 5 with {1,3,6}



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



#### But again we accept ab



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



#### So we try 5 with {2,10}



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



Which is OK. So next possible merge is {7,15} with {1,3,6}



 $S_{=}$ {aa, ab, aaaa, ba}



Which is OK. Now try to merge {8,12} with {1,3,6,7,15}



 $S_{=}$ {aa, ab, aaaa, ba}

#### And *ab* is accepted



 $S_{=}$ {*aa*, *ab*, *aaaa*, *ba*}



# *Now try to merge {8,12} with {4,9,13}*



 $S_{=}$ {aa, ab, aaaa, ba}



#### This is OK and no more merge is possible so the algorithm halts



 $S_{=}$ {aa, ab, aaaa, ba}

# **Properties**



- RPNI identifies any regular language in the limit
- RPNI works in polynomial time. Complexity is in  $O(\|S_{+}\|^{3}.\|S_{-}\|)$
- There are many significant variants of RPNI
- RPNI can be extended to other classes of grammars

## **Exercices**

- Run RPNI on
  - *S*<sub>+</sub>={*a*,*bba*,*bab*,*aabb*}
  - *S\_*={*b*,*ab*,*baa*,*baabb*}
- Find a characteristic sample for:



# **5 Complexity issues**



# A characteristic sample



- A sample is characteristic (for some algorithm) whenever, when included in the learning sample, the algorithm returns the correct DFA
- The characteristic sample should be of polynomial size
- There is an algorithm which given a DFA builds a characteristic sample

# Definition : polynomial characteristic sample



G has polynomial characteristic samples for identification algorithm **a** if there exists a polynomial p() such that: given any G in G,  $\exists CS \text{ correct sample for } G$ , such that when  $CS \subseteq f_n$ ,  $\mathbf{a}(f_n) \equiv G$  and  $\|CS\| \leq p(\|G\|)$ 

# **About characteristic samples**



- If you add more strings to a characteristic sample it still is characteristic
- There can be many different characteristic samples (EDSM, tree version,...)
- Change the ordering (or the exploring function in RPNI) and the characteristic sample will change

# **Open problems**



- RPNI's complexity is not a tight upper bound. Find the correct complexity
- The definition of the characteristic sample is not tight either. Find a better definition
- Can there be a linear time DFA learner?

# Collusion



- Collusion consists in having the learner and the teacher agree of some specific encoding system. Then, the teacher can just pass one string which is the encodinng of the target.
- Is that cheating?
- Is that learning?

# **6 Heuristics**



# **6.1 Genetic Algorithms**



- The principle: via evolutionary mechanisms nature increases the quality of its population.
- Allow a population of solutions to interact and evolve.



# Mechanisms (gene level):

- Mutation
- Crossing-over

## (a solution is just a string)

# **Mutation**



### TTAGCCTTC













# Idea: define the solutions as sequences



- Be able to measure the quality of a solution
- Conceive a first generation
- Define the genetic operations (mutation, crossing over)
- Keep the best elements of the second generation
- Iterate

# Genertic algorithms in Grammatical Inference



- (Dupont 94)
  - code the automata (the partition of states of *PTA(S<sub>+</sub>)*) into partitions
  - define genetic operators
  - define an optimum as an automaton with as few states as possible and rejecting S<sub>1</sub>
  - run the genetic algorithm
# **Structural Mutation**



- Select a state from a block and move it to another block
- Example: {{1,3} {2} {4,5}}

{{1} {2} {**3**,4,5}}

 $\{\{1\} \{2\} \{3\} \{4,5\}\}$ 





### **Structural crossover**

**{1,2}{3,4,5} {1,3}{4}{2,5}** 





# **Group number encoding**

# Partition {{1,2,6}{3,7,9,10}{4,8,12}{5}{11}} is encoded by (112341232253)

# 6.2 Tabu search



- (Giordano 96, based on Glover 89)
- General idea: search a space by choosing a point, and going to its best neighbor that is not in the tabu list.

- $R \leftarrow$  the set of rules of the grammars in the search space
- $G \leftarrow an$  initial grammar
- $G^* \leftarrow G$  the best solution reached so far
- $\mathcal{T} \leftarrow \varnothing$  the Tabu list that cannot occur
- $k \leftarrow 0$  the iterations counter



#### While $k \neq kmax do$

- select r in  $R \setminus T$ , such that the addition or deletion of r from G realizes the maximum of valon X
- add or delete *r* from *G*
- if  $val(G) > val(G^*)$  then  $G^* \leftarrow G$
- Update T
- $k \leftarrow k+1$

Return G\*



- Procedure Update(*T*, *r*)
   if card(*T*) = *n* then delete its last element
   Add *r* as the first element of *T*
- Tricks
  - If *blocked* then delete oldest rule
  - blocked ← 6 iterations
  - if new G\* then empty(7)

# 6.3 Heuristic greedy State Merging



- RPNI chooses to merge the first 2 states that can be merged
- This is an optimistic view
- There may be another...
- But remember: RPNI identifies in the limit!

# How do greedy state merging algorithms work?



- choose two states
  - perform a cascade of forced merges to get a deterministic automaton
  - if it accepts sentences of *S*-, backtrack and choose another couple
  - if not, loop until no merging is still possible







## What moves are allowed?

- Merging a Owith a O
- Promoting a 
   to 
   and all its successors
   that are not
   to
- Promotion:
- when a  $\bigcirc$  can be merged with no  $\bigcirc$

# What if there are many merges possible?

- Heuristics
- compute a score
- choose highest score







# **Evidence driven (Lang 98)**

for each possible pair (●, ●) do
 parse S, and S\_ on A resulting from the
 merge
 assign a score to each state of A according
 to the sentences that they accept
 if there is a conflict: -∞
 else the number of sentences accepted
 sum over all states ⇒ the score of the

merge

select the merge with the highest score

# Data driven (cdlh, Oncina & Vidal 96)



For every  $\bigcirc$  or  $\bigcirc$  state in A count  $v_+(q) = \sum_{w \in S_+} |\{u \in \Pr ef(w) : \delta(q_0, u) = q\}|$  $v_-(q) = \sum_{w \in S_-} |\{u \in \Pr ef(w) : \delta(q_0, u) = q\}|$ 

Choose the pair  $(\bigcirc, \bigcirc)$  such that  $min(v_+(\bigcirc), v_+(\bigcirc)) + min(v_-(\bigcirc), v_-(\bigcirc))$ 

#### is maximal

Zadar, August 2010

# Careful



• Count first...

... then try to merge

- Keep track of all tries
- if some is not mergeable, promote it!

# Main differences



- data driven is cheaper
- evidence driven won Abbadingo competition
- In the stochastic case, it seems that data driven is a good option...

### 6.4 Constraint Satisfaction *PTA* (ababc, +) (c, +) (aac, -) (ab, -) (abac, -)(a,-)





# Consider (Q, incompatible)



- All you have to do is find a maximum clique...
- Another NP-hard problem, but for which good heuristics exist.
- Careful : the maximum clique only gives you a lower bound...

# Alternatively



- You have |Q| variables  $S_1...S_{|Q|}$ , and *n* values 1..*n*.
- You have constraints

or 
$$S_i \neq S_j$$
  
or  $S_i = S_j \Rightarrow S_k = S_i$   
Solve.

#### Biermann 72, Oliveira & Silva 98, Coste & Nicolas 98Zadar, August 2010

# 7 Open questions and conclusions



# **Other versions**



• A Matlab version of RPNI

http://www.sec.in.tum.de/~hasan/matlab/gi\_toolbox/1.0-Beta/

- A JAVA version
- <a href="http://pagesperso.lina.univ-nantes.fr/~cdlh/Downloads/RPNIP.tar.gz">http://pagesperso.lina.univ-nantes.fr/~cdlh/Downloads/RPNIP.tar.gz</a>
- A parallel version exists, and an OCAML, C, C++...

# **Some open questions**



- Do better than EDSM (still some unsloved Abbadingo task out there...)
- Write a O(||f(n)||) algorithm which identifies DFA in the limit (Jose Oncina and cdlh have a log factor still in the way)
- Identify and study the collusion issues
- Deal with noise.