

Learning probabilistic finite automata

Colin de la Higuera University of Nantes

Acknowledgements

- Laurent Miclet, Jose Oncina, Tim Oates, Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe Ezequel, Henning Fernau, Thierry Murgue, Franck Thollard, Enrique Vidal, Frédéric Tantini,...
- List is necessarily incomplete. Excuses to those that have been forgotten

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Chapters 5 and 16

Outline

- 1. PFA
- 2. Distances between distributions
- 3. **FF***A*
- 4. Basic elements for learning PFA
- 5. ALERGIA
- 6. MDI and DSAI
- 7. Open questions

1 PFA

Probabilistic finite (state) automata

- (Computational biology, speech recognition, web services, automatic translation, image processing ...)
- A lot of positive data
- Not necessarily any negative data
- No ideal target
- Noise

The grammar induction problem, revisited

- The data consists of positive strings, «generated» following an unknown distribution
- The goal is now to find (learn) this distribution
- Or the grammar/automaton that is used to generate the strings

Success of the probabilistic models

- n-grams
- Hidden Markov Models
- Probabilistic grammars

DPFA: Deterministic Probabilistic Finite Automaton

$$Pr_A(abab) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{24}$$

PFA: Probabilistic Finite (state) Automaton Zadar, August 2010

ε-*PFA*: Probabilistic Finite (state) Automaton with ε-transitions

How useful are these automata?

- They can define a distribution over Σ^*
- They do not tell us if a string belongs to a language
- They are good candidates for grammar induction
- There is (was?) not that much written theory

Basic references

- The HMM literature
- Azaria Paz 1973: Introduction to probabilistic automata
- Chapter 5 of my book
- Probabilistic Finite-State Machines,
 Vidal, Thollard, cdlh, Casacuberta &
 Carrasco
- Grammatical Inference papers

Let \mathcal{D} be a distribution over Σ^*

$$0 \le \Pr_{\mathcal{D}}(w) \le 1$$

$$\sum_{w \in \Sigma^*} \Pr_{\mathcal{D}}(w) = 1$$

A Probabilistic Finite (state) Automaton is a

$$\langle Q, \Sigma, I_{\rho}, F_{\rho}, \delta_{\rho} \rangle$$

- Q set of states
- $I_{\rho}: Q \rightarrow [0;1]$
- $F_{\rho}: Q \rightarrow [0;1]$
- $\delta_{\rho}: Q \times \Sigma \times Q \rightarrow [0;1]$

What does a PFA do?

• It defines the probability of each string w as the sum (over all paths reading w) of the products of the probabilities

•
$$Pr_{\mathcal{A}}(w) = \sum_{\pi_i \in paths(w)} Pr(\pi_i)$$

•
$$\pi_i = q_{i0} a_{i1} q_{i1} a_{i2} ... a_{in} q_{in}$$

•
$$\Pr(\pi_i) = I_{\rho}(q_{i0}) \cdot F_{\rho}(q_{in}) \cdot \prod_{aij} \delta_{\rho}(q_{ij-1}, a_{ij}, q_{ij})$$

• Note that if λ -transitions are allowed the sum may be infinite

$$Pr(aba) = 0.7*0.4*0.1*1 + 0.7*0.4*0.45*0.2$$
$$= 0.028+0.0252=0.0532_{10}$$

- non deterministic PFA: many initial states/only one initial state
- an λ -PFA: a PFA with λ -transitions and perhaps many initial states
- DPFA: a deterministic PFA

A PFA is consistent if

- $Pr_{\mathcal{A}}(\Sigma^*)=1$
- $\forall x \in \Sigma^* 0 \leq \Pr_A(x) \leq 1$

Consistency theorem

A is consistent if every state is useful (accessible and co-accessible) and

$$\forall q \in Q$$

$$F_{\rho}(q) + \sum_{q' \in Q, a \in \Sigma} \delta_{\rho}(q, a, q') = 1$$

- Equivalence between PFA and HMM...
- But the HMM usually define distributions over each Σ^n

A football HMM

win draw lose win draw lose win draw lose

Equivalence between *PFA* with λ -transitions and *PFA* without λ -transitions

cdlh 2003, Hanneforth & cdlh 2009

- Many initial states can be transformed into one initial state with λ -transitions;
- \bullet λ -transitions can be removed in polynomial time;
- Strategy:
 - number the states
 - eliminate first λ -loops, then the transitions with highest ranking arrival state

PFA are strictly more powerful than **DPFA**

Folk theorem

(and) You can't even tell in advance if you are in a good case or not

(see: Denis & Esposito 2004)

And with this architecture you cannot generate the previous one

- Computation of the probability of a string or of a set of strings
- Deterministic case
 - Simple: apply definitions
 - Technically, rather sum up logs: this is easier, safer and cheaper

$$Pr(aba) = 0.7*0.9*0.35*0 = 0$$

 $Pr(abb) = 0.7*0.9*0.65*0.3 = 0.12285$

Non-deterministic case

$$Pr(aba) = 0.7*0.4*0.1*1 + 0.7*0.4*0.45*0.2$$
$$= 0.028+0.0252=0.0532_{10}$$

In the literature

- The computation of the probability of a string is by dynamic programming: $O(n^2 m)$
- 2 algorithms: Backward and Forward
- If we want the most probable derivation to define the probability of a string, then we can use the Viterbi algorithm

Forward algorithm

- $A[i,j]=Pr(q_i|a_1..a_j)$ (The probability of being in state q_i after having read $a_1..a_j$)
- $A[i,0]=I_p(q_i)$
- $A[i,j+1] = \sum_{k \leq |Q|} A[k,j] \cdot \delta_{p}(q_{k},a_{j+1},q_{i})$
- $Pr(a_1..a_n) = \sum_{k \leq |Q|} A[k,n] \cdot F_p(q_k)$

2 Distances

What for?

- Estimate the quality of a language model
- Have an indicator of the convergence of learning algorithms
- Construct kernels

2.1 Entropy

- How many bits do we need to correct our model?
- Two distributions over Σ^* : \mathcal{D} et \mathcal{D}'
- Kullback Leibler divergence (or relative entropy) between \mathcal{D} and \mathcal{D} :

$$\sum_{w \in \Sigma^*} \Pr_{\mathcal{D}}(w) \times |\log \Pr_{\mathcal{D}}(w) - \log \Pr_{\mathcal{D}'}(w)|$$

- The idea is to allow the computation of the divergence, but relatively to a test set (S)
- An approximation (sic) is perplexity: inverse of the geometric mean of the probabilities of the elements of the test set

$$\prod_{w \in S} \Pr_{\mathcal{D}}(w)^{-1/|S|}$$

1

$$\bigvee_{w \in S} \Pr_{\mathcal{D}}(w)$$

Problem if some probability is null...

 We are trying to compute the probability of independently drawing the different strings in set 5

Why multiply? (2)

- Suppose we have two predictors for a coin toss
 - Predictor 1: heads 60%, tails 40%
 - Predictor 2: heads 100%
- The tests are H: 6, T: 4
- Arithmetic mean
 - P1: 36%+16%=0,52
 - P2: 0,6
- Predictor 2 is the better predictor ;-)

$$d_2(\mathcal{D}, \mathcal{D}') = \sqrt{\sum_{w \in \Sigma^*} (\Pr_{\mathcal{D}}(w) - \Pr_{\mathcal{D}}(w))^2}$$

Can be computed in polynomial time if \mathcal{D} and \mathcal{D}' are given by *PFA* (Carrasco & cdlh 2002)

This also means that equivalence of PFA is in P

3 FFA

Frequency Finite (state) Automata

A learning sample

- is a multiset
- Strings appear with a frequency (or multiplicity)
- S={λ (3), aaa (4), aaba (2), ababa (1), bb
 (3), bbaaa (1)}

Zadar, August 2010

DFFA

- A deterministic frequency finite automaton is a DFA with a frequency function returning a positive integer for every state and every transition, and for entering the initial state such that
- the sum of what enters is equal to what exits and
- the sum of what halts is equal to what starts

Example

From a DFFA to a DPFA

Frequencies become relative frequencies by dividing by sum of exiting frequencies

Zadar, August 2010

From a DFA and a sample to a DFFA

 $S = \{\lambda, aaaa, ab, babb, bbbb, bbbbaa\}$

Note

- Another sample may lead to the same DFFA
- Doing the same with a NFA is a much harder problem
- Typically what algorithm Baum-Welch (EM) has been invented for...

Zadar, August 2010

The frequency prefix tree acceptor

- The data is a multi-set
- The FTA is the smallest tree-like FFA consistent with the data
- Can be transformed into a PFA if needed

$$S=\{\lambda\ (3), aaa\ (4), aaba\ (2), ababa\ (1), bb\ (3), bbaaa\ (1)\}_{48}$$

- -Red states are confirmed states
- -Blue states are the (non Red) successors of the Red states
- -White states are the others

Suppose we decide to merge

Merge and fold

Merge and fold

Merge and fold

State merging algorithm

```
A=FTA(S); B/ue=\{\delta(q_T,a): a\in\Sigma\};
Red = \{q_T\}
While Blue \neq \emptyset do
  choose q from Blue such that Freq(q) \ge t_0
  if \exists p \in Red: d(A_p, A_q) is small
       then A = \text{merge\_and\_fold}(A, p, q)
       else Red = Red \cup {q}
  Blue = \{\delta(q,a): q \in Red\} - \{Red\}
```


- How do we decide if $d(A_p, A_q)$ is small?
- Use a distance...
- Be able to compute this distance
- If possible update the computation easily
- Have properties related to this distance

Zadar, August 2010

Deciding if two distributions are similar

- If the two distributions are known, equality can be tested
- Distance (L₂ norm) between distributions can be exactly computed
- But what if the two distributions are unknown?

Taking decisions

Suppose we want to merge with state a

Taking decisions

5 Alergia

Alergia's test

- $\mathcal{D}_1 \approx \mathcal{D}_2 \text{ if } \forall x \Pr_{\mathcal{D}_1}(x) \approx \Pr_{\mathcal{D}_2}(x)$
- Easier to test:
 - $Pr_{\mathcal{D}_1}(\lambda) = Pr_{\mathcal{D}_2}(\lambda)$
 - $\forall a \in \Sigma \Pr_{\mathcal{D}_1}(a\Sigma^*) = \Pr_{\mathcal{D}_2}(a\Sigma^*)$
- And do this recursively!
- Of course, do it on frequencies

$$\gamma \leftarrow \left| \frac{f_1}{n_1} - \frac{f_2}{n_2} \right|$$

$$\gamma < \left(\sqrt{\frac{1}{n_1}} + \sqrt{\frac{1}{n_2}}\right) \cdot \sqrt{\frac{1}{2} \ln \frac{2}{\alpha}}$$

 γ indicates if the relative frequencies $\frac{f_1}{n_1}$ and $\frac{f_2}{n_2}$ are sufficiently close n_1

$$\frac{f_1}{n_1}$$
 and $\frac{f_2}{n_2}$ are

A run of Alergia Our learning multisample


```
S=\{\lambda(490), a(128), b(170), aa(31), ab(42), a
             ba(38), bb(14), aaa(8), aab(10), aba(10),
             abb(4), baa(9), bab(4), bba(3), bbb(6),
             aaaa(2), aaab(2), aaba(3), aabb(2), abaa(2),
             abab(2), abba(2), abbb(1), baaa(2), baab(2),
             baba(1), babb(1), bbaa(1), bbab(1), bbba(1),
             aaaaa(1), aaaab(1), aaaba(1), aabaa(1),
             aabab(1), aabba(1), abbaa(1), abbab(1)}
```


- Parameter α is arbitrarily set to 0.05. We choose 30 as a value for threshold t_0 .
- Note that for the blue state who have a frequency less than the threshold, a special merging operation takes place

Can we merge λ and a?

- Compare λ and a, $a\Sigma^*$ and $aa\Sigma^*$, $b\Sigma^*$ and $ab\Sigma^*$
- 490/1000 with 128/257 ,
- 257/1000 with 64/257 ,
- 253/1000 with 65/257 ,

All tests return true

And fold

Next merge? λ with b?

Can we merge λ and b?

- Compare λ and b, $a\Sigma^*$ and $ba\Sigma^*$, $b\Sigma^*$ and $bb\Sigma^*$
- 660/1341 and 225/340 are different (giving γ = 0.162)
- On the other hand

$$\left(\sqrt{\frac{1}{n_1}} + \sqrt{\frac{1}{n_2}}\right) \cdot \sqrt{\frac{1}{2} \ln \frac{2}{\alpha}} = 0.111$$

Promotion

Merge

And fold

Merge

And fold

AsaPFA

- Alergia builds a DFFA in polynomial time
- Alergia can identify DPFA in the limit with probability 1
- No good definition of Alergia's properties

Zadar, August 2010

6 DSAI and MDI

Why not change the criterion?

Criterion for DSAI

- Using a distinguishable string
- Use norm L_{∞}
- Two distributions are different if there is a string with a very different probability
- \bullet Such a string is called μ -distinguishable
- Question becomes:

Is there a string x such that
$$|Pr_{A,q}(x)-Pr_{A,q'}(x)|>\mu$$

(much more to DSAI)

- D. Ron, Y. Singer, and N. Tishby. On the learnability and usage of acyclic probabilistic finite automata. In Proceedings of Colt 1995, pages 31-40, 1995.
- PAC learnability results, in the case where targets are acyclic graphs

Criterion for MDI

- MDL inspired heuristic
- Criterion is: does the reduction of the size of the automaton compensate for the increase in preplexity?
- F. Thollard, P. Dupont, and C. de la Higuera. Probabilistic Dfa inference using Kullback-Leibler divergence and minimality. In *Proceedings of the 17th International Conference on Machine Learning*, pages 975-982. Morgan Kaufmann, San Francisco, CA, 2000

7 Conclusion and open questions

- A good candidate to learn NFA is DEES
- Never has been a challenge, so state of the art is still unclear
- Lots of room for improvement towards probabilistic transducers and probabilistic context-free grammars

Appendix

Stern Brocot trees
Identification of probabilities
If we were able to discover the structure, how do we identify the probabilities?

 By estimation: the edge is used 1501 times out of 3000 passages through the state:

Stern-Brocot trees: (Stern 1858, Brocot 1860)

Can be constructed from two simple adjacent fractions by the «mean» operation

$$\frac{a}{b} \quad \frac{c}{d} = \frac{a+c}{b+d}$$

• Instead of returning c(x)/n, search the Stern-Brocot tree to find a good simple approximation of this value.

Zadar, August 2010

Iterated Logarithm:

With probability 1, for a co-finite number of values of n we have:

$$\left| \frac{c(x)}{n} - \frac{a}{b} \right| < \sqrt{\frac{\lambda \log \log n}{n}}$$

$$\forall \lambda > 1$$

Zadar, August 2010