Learning probabilistic finite automata

Colin de la Higuera
University of Nantes
Acknowledgements

• Laurent Miclet, Jose Oncina, Tim Oates, Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe Ezequeil, Henning Fernau, Thierry Murgue, Franck Thollard, Enrique Vidal, Frédéric Tantini,...
• List is necessarily incomplete. Excuses to those that have been forgotten

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/

Chapters 5 and 16
Outline

1. PFA
2. Distances between distributions
3. FFA
4. Basic elements for learning PFA
5. ALERGIA
6. MDI and DSAI
7. Open questions
1 PFA

Probabilistic finite (state) automata
Practical motivations

(Computational biology, speech recognition, web services, automatic translation, image processing ...)

- A lot of positive data
- Not necessarily any negative data
- No ideal target
- Noise
The grammar induction problem, revisited

- The data consists of positive strings, «generated» following an unknown distribution
- The goal is now to find (learn) this distribution
- Or the grammar/automaton that is used to generate the strings
Success of the probabilistic models

- n-grams
- Hidden Markov Models
- Probabilistic grammars
A DPFA (Deterministic Probabilistic Finite Automaton) is a type of automaton where each transition has a probability associated with it. The diagram shows a DPFA with several states and transitions labeled with probabilities. For example, the transition from state 1 to state 2 has a probability of 1/2 for input 'a' and 1/2 for input 'b'. The DPFA has a start state and multiple final states, indicated by the rounded circles with double borders. The diagram illustrates the probabilistic behavior of the automaton for different inputs.
\[\Pr_A(abab) = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{4} = \frac{1}{24} \]
PFA: Probabilistic Finite (state) Automaton
\(\varepsilon \)-PFA: Probabilistic Finite (state) Automaton with \(\varepsilon \)-transitions
How useful are these automata?

- They can define a distribution over Σ^*
- They do not tell us if a string belongs to a language
- They are good candidates for grammar induction
- There is (was?) not that much written theory
Basic references

- The *HMM* literature
- Azaria Paz 1973: *Introduction to probabilistic automata*
- Chapter 5 of my book
- *Probabilistic Finite-State Machines*, Vidal, Thollard, cdlh, Casacuberta & Carrasco
- *Grammatical Inference papers*
Automata, definitions

Let \mathcal{D} be a distribution over Σ^*

$$0 \leq \Pr_{\mathcal{D}}(w) \leq 1$$

$$\sum_{w \in \Sigma^*} \Pr_{\mathcal{D}}(w) = 1$$
A Probabilistic Finite (state) Automaton is a \(<Q, \Sigma, I_\rho, F_\rho, \delta_\rho>\)

- \(Q\) set of states
- \(I_\rho: Q \rightarrow [0;1]\)
- \(F_\rho: Q \rightarrow [0;1]\)
- \(\delta_\rho: Q \times \Sigma \times Q \rightarrow [0;1]\)
What does a PFA do?

- It defines the probability of each string \(w \) as the sum (over all paths reading \(w \)) of the products of the probabilities

\[
\Pr_A(w) = \sum_{\pi \in \text{paths}(w)} \Pr(\pi)
\]

- \(\pi = q_0 a_1 q_1 a_2 \ldots a_n q_n \)

- \(\Pr(\pi) = I(\pi_0) \cdot F(\pi_n) \cdot \prod_{a,j} \delta_{\rho}(q_{i-1,j}, a_{i,j}, q_{i,j}) \)

- Note that if \(\lambda \)-transitions are allowed the sum may be infinite
\[
\Pr(aba) = 0.7 \times 0.4 \times 0.1 \times 1 + 0.7 \times 0.4 \times 0.45 \times 0.2 = 0.028 + 0.0252 = 0.0532
\]
• non deterministic PFA: many initial states/only one initial state
• an λ-PFA: a PFA with λ-transitions and perhaps many initial states
• DPFA: a deterministic PFA
Consistency

A PFA is consistent if

1. \(\text{Pr}_A(\Sigma^*) = 1 \)
2. \(\forall x \in \Sigma^* \ 0 \leq \text{Pr}_A(x) \leq 1 \)
Consistency theorem

A is consistent if every state is useful (accessible and co-accessible) and

$$\forall q \in Q$$

$$F_P(q) + \sum_{q' \in Q, a \in \Sigma} \delta_P(q, a, q') = 1$$
Equivalence between models

• Equivalence between PFA and HMM...

• But the HMM usually define distributions over each Σ^n
A football HMM

win draw lose win draw lose win draw lose

\[
\begin{align*}
\frac{1}{2} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{2} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{2} \\
\frac{3}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{2} & \quad \frac{3}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{4} & \quad \frac{1}{2} \\
\end{align*}
\]
Equivalence between PFA with λ-transitions and PFA without λ-transitions

cdlh 2003, Hanneforth & cdlh 2009

- Many initial states can be transformed into one initial state with λ-transitions;
- λ-transitions can be removed in polynomial time;
- Strategy:
 - number the states
 - eliminate first λ-loops, then the transitions with highest ranking arrival state
PFA are strictly more powerful than DPFA

Folk theorem

(and) You can’t even tell in advance if you are in a good case or not

(see: Denis & Esposito 2004)
This distribution cannot be modelled by a DPFA.
What does a DPFA over $\Sigma = \{a\}$ look like?

And with this architecture you cannot generate the previous one
Parsing issues

- Computation of the probability of a string or of a set of strings
- Deterministic case
 - Simple: apply definitions
 - Technically, rather sum up logs: this is easier, safer and cheaper
\[\text{Pr}(aba) = 0.7 \times 0.9 \times 0.35 \times 0 = 0 \]
\[\text{Pr}(abb) = 0.7 \times 0.9 \times 0.65 \times 0.3 = 0.12285 \]
Non-deterministic case

\[
\text{Pr}(aba) = 0.7 \times 0.4 \times 0.1 \times 1 + 0.7 \times 0.4 \times 0.45 \times 0.2 \\
= 0.028 + 0.0252 = 0.0532
\]
In the literature

- The computation of the probability of a string is by dynamic programming: \(O(n^2m) \)
- 2 algorithms: *Backward* and *Forward*
- If we want the most probable derivation to define the probability of a string, then we can use the *Viterbi* algorithm
Forward algorithm

- $A[i,j] = \Pr(q_i|a_1..a_j)$
 (The probability of being in state q_i after having read $a_1..a_j$)
- $A[i,0] = \mathbb{I}_\rho(q_i)$
- $A[i,j+1] = \sum_{k \leq |Q|} A[k,j] \cdot \delta_\rho(q_k,a_{j+1},q_i)$
- $\Pr(a_1..a_n) = \sum_{k \leq |Q|} A[k,n] \cdot F_\rho(q_k)$
2 Distances

What for?
- Estimate the quality of a language model
- Have an indicator of the convergence of learning algorithms
- Construct kernels
2.1 Entropy

- How many bits do we need to correct our model?
- Two distributions over Σ^*: \mathcal{D} et \mathcal{D}'
- Kullback Leibler divergence (or relative entropy) between \mathcal{D} and \mathcal{D}':

$$\sum_{w \in \Sigma^*} \Pr_D(w) \times \left| \log \Pr_D(w) - \log \Pr_{\mathcal{D}'}(w) \right|$$
2.2 Perplexity

- The idea is to allow the computation of the divergence, but relatively to a test set \((S) \).
- An approximation (sic) is perplexity: inverse of the geometric mean of the probabilities of the elements of the test set.
\[
\prod_{w \in S} \Pr_{\mathcal{D}}(w)^{-1/|S|} = 1
\]

\[
\sqrt[|S|]{\prod_{w \in S} \Pr_{\mathcal{D}}(w)}
\]

Problem if some probability is null...
Why multiply (1)

- We are trying to compute the probability of independently drawing the different strings in set S.
Why multiply? (2)

- Suppose we have two predictors for a coin toss
 - Predictor 1: heads 60%, tails 40%
 - Predictor 2: heads 100%
- The tests are H: 6, T: 4
- Arithmetic mean
 - P1: 36% + 16% = 0.52
 - P2: 0.6
- Predictor 2 is the better predictor ;-)
2.3 Distance d_2

$$d_2(\mathcal{D}, \mathcal{D}') = \sqrt{\sum_{w \in \Sigma^*} (\Pr_{\mathcal{D}}(w) - \Pr_{\mathcal{D}'}(w))^2}$$

Can be computed in polynomial time if \mathcal{D} and \mathcal{D}' are given by PFA (Carrasco & cdih 2002)

This also means that equivalence of PFA is in \mathbf{P}
3 FFA

Frequency Finite (state) Automata
A learning sample

- is a multiset
- Strings appear with a frequency (or multiplicity)
- $S=\lambda (3), \text{aaa (4), aaba (2), ababa (1), bb (3), bbaaa (1)}$
A deterministic frequency finite automaton is a DFA with a frequency function returning a positive integer for every state and every transition, and for entering the initial state such that

- the sum of what enters is equal to what exits and
- the sum of what halts is equal to what starts
Example
From a DFFA to a DPFA

Frequencies become relative frequencies by dividing by sum of exiting frequencies

Zadar, August 2010
From a DFA and a sample to a DFFA

\[S = \{ \lambda, aaaaa, ab, babb, bbbb, bbbbaa \} \]
Note

- Another sample may lead to the same DFFA
- Doing the same with a NFA is a much harder problem
- Typically what algorithm Baum-Welch (EM) has been invented for...
The frequency prefix tree acceptor

- The data is a multi-set
- The FTA is the smallest tree-like FFA consistent with the data
- Can be transformed into a PFA if needed
From the sample to the FTA

FTA(S)

$S=\{\lambda\ (3),\ a\ a\ a\ (4),\ a\ a\ b\ a\ (2),\ a\ b\ a\ b\ a\ (1),\ b\ b\ (3),\ b\ b\ a\ a\ a\ (1)\}$
Red, Blue and White states

- **Red** states are confirmed states
- **Blue** states are the (non Red) successors of the Red states
- **White** states are the others

Same as with DFA and what RPNI does
Merge and fold

Suppose we decide to merge with state \(a \)
Merge and fold

First disconnect and reconnect to

Zadar, August 2010
Merge and fold

Then fold
Merge and fold

after folding
State merging algorithm

\[A = \text{FTA}(S); \quad \text{Blue} = \{ \delta(q_I, a) : a \in \Sigma \}; \]
\[\text{Red} = \{ q_I \} \]

While Blue \(\neq \emptyset \) do

choose \(q \) from Blue such that Freq(\(q \)) \(\geq t_0 \)

if \(\exists p \in \text{Red}: \ d(A_p, A_q) \) is small

then \(A = \text{merge_and_fold}(A, p, q) \)

else \(\text{Red} = \text{Red} \cup \{ q \} \)

Blue = \{ \delta(q, a) : q \in \text{Red} \} - \{ \text{Red} \} \]
The real question

- How do we decide if $d(A_p, A_q)$ is small?
- Use a distance...
- Be able to compute this distance
- If possible update the computation easily
- Have properties related to this distance
Deciding if two distributions are similar

- If the two distributions are known, equality can be tested
- Distance (L_2 norm) between distributions can be exactly computed
- But what if the two distributions are unknown?
Taking decisions

Suppose we want to merge with state a.

![Graph Diagram]
Taking decisions

Yes if the two distributions induced are similar

Zadar, August 2010
5 Alergia
Alergia’s test

- $D_1 \approx D_2$ if $\forall x \Pr_{D_1}(x) \approx \Pr_{D_2}(x)$
- Easier to test:
 - $\Pr_{D_1}(\lambda) = \Pr_{D_2}(\lambda)$
 - $\forall a \in \Sigma \Pr_{D_1}(a\Sigma^*) = \Pr_{D_2}(a\Sigma^*)$
- And do this recursively!
- Of course, do it on frequencies
Hoeffding bounds

\[\gamma \leftarrow \left| \frac{f_1}{n_1} - \frac{f_2}{n_2} \right| \]

\[\gamma < \left(\sqrt{\frac{1}{n_1}} + \sqrt{\frac{1}{n_2}} \right) \cdot \sqrt{\frac{1}{2} \ln \frac{2}{\alpha}} \]

\(\gamma \) indicates if the relative frequencies \(\frac{f_1}{n_1} \) and \(\frac{f_2}{n_2} \) are sufficiently close.
A run of Alergia
Our learning multisample

\[S = \{ \lambda(490), a(128), b(170), aa(31), ab(42), ba(38), bb(14), aaa(8), aab(10), aba(10), abb(4), baa(9), bab(4), bba(3), bbb(6), aaaa(2), aaab(2), aaba(3), aabb(2), abaa(2), abab(2), abba(2), abbb(1), baaa(2), baab(2), baba(1), babb(1), bbab(1), bbba(1), aaaa(1), aaaab(1), aaaba(1), aabaa(1), aabab(1), aabba(1), abbaa(1), abbab(1), aabab(1), aabba(1), abbaa(1), abbab(1) \} \]
Parameter α is arbitrarily set to 0.05. We choose 30 as a value for threshold t_0.

Note that for the blue state who have a frequency less than the threshold, a special merging operation takes place.
Can we merge λ and a?

- Compare λ and a, $a\Sigma^*$ and $aa\Sigma^*$, $b\Sigma^*$ and $ab\Sigma^*$
- $490/1000$ with $128/257$, $257/1000$ with $64/257$, $253/1000$ with $65/257$, . . .

- All tests return true
And fold
Next merge?
λ with b?
Can we merge λ and b?

- Compare λ and b, $a\Sigma^*$ and $ba\Sigma^*$, $b\Sigma^*$ and $bb\Sigma^*$
- $660/1341$ and $225/340$ are different (giving $\gamma = 0.162$)
- On the other hand

$$\left(\sqrt{\frac{1}{n_1}} + \sqrt{\frac{1}{n_2}}\right)\cdot\sqrt{\frac{1}{2\ln\frac{2}{\alpha}}} = 0.111$$
Merge
And fold

Zadar, August 2010
Merge

Diagram showing two connected nodes labeled 660 and 225 with arrows indicating flow. Numbers associated with arcs include 'a: 341' and 'b: 340' for the 660 node, and 'a: 95' for the 225 node. Another diagram shows a tree structure with nodes labeled 29, 7, 8, and 1, with arcs labeled 'a: 11', 'b: 49', 'a: 2', 'b: 2', 'a: 1', and 'b: 9'.
And fold

As a PFA
Conclusion and logic

- Alergia builds a DFFA in polynomial time
- Alergia can identify DPFA in the limit with probability 1
- No good definition of Alergia’s properties
6 DSAI and MDI

Why not change the criterion?
Criterion for DSAI

- Using a distinguishable string
- Use norm L_∞
- Two distributions are different if there is a string with a very different probability
- Such a string is called μ-distinguishable
- Question becomes:

 Is there a string x such that
 \[|\Pr_{A,q}(x) - \Pr_{A,q'}(x)| > \mu \]
(much more to DSAI)

- PAC learnability results, in the case where targets are acyclic graphs
Criterion for MDI

- MDL inspired heuristic
- Criterion is: does the reduction of the size of the automaton compensate for the increase in preplexity?
7 Conclusion and open questions
A good candidate to learn NFA is DEES

Never has been a challenge, so state of the art is still unclear

Lots of room for improvement towards probabilistic transducers and probabilistic context-free grammars
Appendix

Stern Brocot trees
Identification of probabilities

If we were able to discover the structure, how do we identify the probabilities?
By estimation: the edge is used 1501 times out of 3000 passages through the state.
Stern-Brocot trees: (Stern 1858, Brocot 1860)

Can be constructed from two simple adjacent fractions by the «mean» operation

\[
\frac{a}{b} \quad m \quad \frac{c}{d} = \frac{a+c}{b+d}
\]
Idea:

- Instead of returning $c(x)/n$, search the Stern-Brocot tree to find a good simple approximation of this value.
Iterated Logarithm:
With probability 1, for a co-finite number of values of n we have:

$$\left| \frac{c(x)}{n} - \frac{a}{b} \right| < \sqrt{\frac{\lambda \log \log n}{n}}$$

$\forall \lambda > 1$