
Zadar, August 2010 1

Learning from Text

Colin de la Higuera
University

of Nantes

Zadar, August 2010

2

Cdlh 2010

Acknowledgements
Laurent Miclet, Jose Oncina, Tim Oates, Anne-
Muriel Arigon, Leo Becerra-Bonache, Rafael
Carrasco, Paco Casacuberta, Pierre Dupont, Rémi
Eyraud, Philippe Ezequel, Henning Fernau, Jean-
Christophe Janodet, Satoshi Kobayachi, Thierry
Murgue, Frédéric Tantini, Franck Thollard,
Enrique Vidal, Menno van Zaanen,...

http://pagesperso.lina.univ-nantes.fr/~cdlh/
http://videolectures.net/colin_de_la_higuera/

http://pagesperso.lina.univ-nantes.fr/~cdlh/

Zadar, August 2010

3

Cdlh 2010

Outline
1.

Motivations, definition and difficulties

2.

Some negative results
3.

Learning k-testable languages from text

4.

Learning k-reversible languages from
text

5.

Conclusions

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/
Chapters 8 and 11

Zadar, August 2010

4

Cdlh 2010

1 Identification in the limit

L Pres ⊆

ℕ→XA class of languages

A class of grammars
G

L A learner
The naming function

yields

a

ϕ(ℕ)=ψ(ℕ) ⇒yields(ϕ)=yields(ψ)
L(a(ϕ))=yields(ϕ)

Zadar, August 2010

5

Cdlh 2010

Learning from text
Only positive examples are available
Danger of over-generalization: why not
return Σ*?
The problem is “basic”:

Negative examples might not be available
Or they might be heavily biased: near-
misses, absurd examples…

Base line: all the rest is learning with
help

Zadar, August 2010

6

Cdlh 2010

Σ

PTA

?

GI as a search problem

Zadar, August 2010

7

Cdlh 2010

Questions?

Data is unlabelled…
Is this a clustering problem?
Is this a problem posed in other settings?

Zadar, August 2010

8

Cdlh 2010

2 The theory

Gold 67: No super-finite class can be
identified from positive examples (or
text) only
Necessary and sufficient conditions for
learning
Literature:

inductive inference,
ALT series, …

Zadar, August 2010

9

Cdlh 2010

Limit point

A class L of languages has a limit point if
there exists an infinite sequence Ln n∈ℕ of
languages in L such that L0 ⊂ L1 ⊂ … Ln ⊂

…, and there exists another language L∈ L
such that L = ∪n∈ℕLn

L is called a limit point of L

Zadar, August 2010

10

Cdlh 2010

L is a limit point

L0 L1
L2
L3

Li

L

Zadar, August 2010

11

Cdlh 2010

Theorem

If L

admits a limit point, then L

is not
learnable from text

Proof:Proof:

Let

si

be a presentation in length-lex
 order for

Li

, and s be a presentation in
length-lex

order for

L. Then

∀n∈ℕ

∃i / ∀k≤n

 si
k

= sk

Note:

having a limit point is a sufficient
condition for non learnability; not a necessary
condition

Zadar, August 2010

12

Cdlh 2010

Mincons classes

A class is mincons if there is an algorithm
which, given a sample S, builds a G∈G such
that S ⊆ L ⊆ L(G) ⇒L = L(G)

Ie there is a unique minimum (for inclusion)
consistent grammar

Zadar, August 2010

13

Cdlh 2010

Accumulation point (Kapur 91)

A class L

of languages has an
accumulation point

if

there exists an

infinite sequence Sn n∈ℕ

of sets such that
S0 ⊆ S1 ⊆

… Sn

⊆

…, and L= ∪n∈ℕSn

∈

L
…and for any n∈ℕ

there exists a

language Ln

’

in L

such that Sn

⊆ Ln

’ ⊂ L.

The language L is called an accumulation
point

of L

Zadar, August 2010

14

Cdlh 2010

L is an accumulation point

L

Ln

’

S0 S1
S2
S3

Sn

Zadar, August 2010

15

Cdlh 2010

Theorem (for Mincons classes)

L admits an accumulation point
iff

L is not learnable from text

Zadar, August 2010

16

Cdlh 2010

Infinite Elasticity

If a class of languages has a limit
point there exists an infinite
ascending chain of languages L0 ⊂ L1
⊂ … ⊂ Ln ⊂ ….
This property is called infinite
elasticity

Zadar, August 2010

17

Cdlh 2010

Infinite Elasticity

x0 x1
x2
x3

xi Xi+1 Xi+2 Xi+3 Xi+4

Zadar, August 2010

18

Cdlh 2010

Finite elasticity

L has finite elasticity if it does not have
infinite elasticity

Zadar, August 2010

19

Cdlh 2010

Theorem (Wright)

If L

(G) has finite elasticity and is
mincons, then G

is learnable.

Zadar, August 2010

20

Cdlh 2010

Tell tale sets

L(G)

L(G’)
TG

x4

x3

x2

x1

Forbidden

Zadar, August 2010

21

Cdlh 2010

Theorem (Angluin)

G

is learnable iff

there is a computable
partial function ψ: G

×ℕ→Σ*

such that:

1)

∀n∈ℕ, ψ(G,n) is defined iff G∈G

and L(G)≠∅

2)

∀G∈G, TM

={ψ(G,n): n∈ℕ} is a finite subset of
L(G) called a tell-tale subset

3)

∀G,G’∈M, if TM

⊆

L(G’) then L(G’)⊄

L(G)

Zadar, August 2010

22

Cdlh 2010

Proposition (Kapur 91)

A language L in L has a tell-tale subset iff
 L is not

an accumulation point.

(for mincons)

Zadar, August 2010

23

Cdlh 2010

Summarizing

Many alternative ways of proving that
identification in the limit is not feasible
Methodological-philosophical discussion
We still need practical solutions

Zadar, August 2010 24

3 Learning k-testable
languages

P. García

and E. Vidal. Inference of K-testable
languages in the strict sense and applications to

syntactic pattern recognition. Pattern Analysis and
Machine Intelligence, 12(9):920–925, 1990

P. García, E. Vidal, and J. Oncina. Learning locally
testable languages in the strict sense. In

Workshop on Algorithmic Learning Theory (Alt
90), pages 325–338, 1990

Zadar, August 2010

25

Cdlh 2010

Definition

Let k≥0, a k-testable language in the strict
sense (k-TSS) is a 5-tuple Zk

=(Σ, I, F, T, C)
with:
Σ a finite alphabet
I, F ⊆ Σk-1 (allowed prefixes of length k-1 and
suffixes of length k-1)
T ⊆ Σk (allowed segments)
C ⊆ Σ<k contains all strings of length less than k
Note that I∩F=C∩Σk-1

Zadar, August 2010

26

Cdlh 2010

The k-testable language is
L(Zk

)=IΣ*

∩ Σ*F -

Σ*(Σk-T)Σ*∪C
Strings (of length at least k) have to
use a good prefix and a good suffix
of length k-1, and all sub-strings
have to belong to T. Strings of
length less than k should be in C
Or: Σk-T defines the prohibited
segments
Key idea: use a window of size k

Zadar, August 2010

27

Cdlh 2010

An example (2-testable)

I={a}

F={a}

T={aa, ab, ba}
C={λ,a}

a
b

λ
a

a

ba

Zadar, August 2010

28

Cdlh 2010

Window language

By sliding a window of size 2 over a string
we can parse
ababaaababababaaaab OK
aaabbaaaababab not OK

Zadar, August 2010

29

Cdlh 2010

The hierarchy of k-TSS
languages

k-TSS(Σ)={L⊆Σ*: L is k-TSS}
All finite languages are in k-TSS(Σ) if k is
large enough!
k-TSS(Σ) ⊂ [k+1]-TSS(Σ)
(bak)* ∈ [k+1]-TSS(Σ)
(bak)* ∉ k-TSS(Σ)

Zadar, August 2010

30

Cdlh 2010

A language that is not k-
testable

b

λ
a

a

b

a

a

Zadar, August 2010

31

Cdlh 2010

K-TSS inference

Given a sample S, L(ak-TSS

(S))= Zk

where
Zk

=(Σ(S), I(S), F(S), T(S), C(S)) and
Σ(S) is the alphabet used in S
C(S)=Σ(S)<k∩S
I(S)=Σ(S)k-1∩Pref(S)
F(S)= Σ(S)k-1∩Suff(S)
T(S)=Σ(S)k ∩ {v: uvw∈S}

Zadar, August 2010

32

Cdlh 2010

Example

S={a, aa, abba, abbbba}
Let k=3
Σ(S)={a, b}
I(S)= {aa, ab}
F(S)= {aa, ba}
C(S)= {a , aa}
T(S)={abb, bbb, bba}

L(a3-TSS(S))= ab*a+a

Zadar, August 2010

33

Cdlh 2010

Building the corresponding
automaton

Each string in I∪C and PREF(I∪C) is a state
Each substring of length k-1 of strings in T is a
state
λ is the initial state
Add a transition labeled b from u to ub for each
state ub
Add a transition labeled b from au to ub for each
aub in T
Each state/substring that is in F is a final state
Each state/substring that is in C is a final state

Zadar, August 2010

34

Cdlh 2010

Running the algorithm

S={a, aa, abba, abbbba}

I={aa, ab}

F={aa, ba}

T={abb, bbb, bba}
C={a, aa}

a
λ

ab

ba
bb

aaa

b

b

b

a

a

a
λ

ab

ba
bb

aa

Zadar, August 2010

35

Cdlh 2010

Properties (1)

S ⊆ L(ak-TSS(S))

L(ak-TSS(S)) is the smallest k-TSS
language that contains S

If there is a smaller one, some prefix, suffix
or substring has to be absent

Zadar, August 2010

36

Cdlh 2010

Properties (2)

ak-TSS identifies any k-TSS language in the
limit from polynomial data

Once all the prefixes, suffixes and substrings
have been seen, the correct automaton is
returned

If Y⊆S, L(ak-TSS(Y)) ⊆ L(ak-TSS(S))

Zadar, August 2010

37

Cdlh 2010

Properties (3)

L(ak+1-TSS(S)) ⊆ L(ak-TSS(S))
In Ik+1

(resp. Fk+1

and Tk+1

) there are less
allowed prefixes (resp. suffixes or
substrings) than in Ik

(resp. Fk

and Tk

)
∀k>maxx∈S⏐x⏐, L(ak-TSS(S))= S

Because for a large k, Tk(S)=∅

Zadar, August 2010 38

4 Learning k-reversible
languages from text

D. Angluin. Inference of reversible
languages. Journal of the Association
for Computing Machinery, 29(3):741–

 765, 1982

Zadar, August 2010

39

Cdlh 2010

The k-reversible languages
The class was proposed by Angluin (1982)
The class is identifiable in the limit from text
The class is composed by regular languages that
can be accepted by a DFA such that its reverse is
deterministic with a look-ahead of k

Zadar, August 2010

40

Cdlh 2010

Let A=(Σ, Q, δ, I, F) be a NFA,
we denote by AT=(Σ, Q, δT, F, I) the reversal

automaton with:

δT(q,a)={q’∈Q: q∈δ(q’,a)}

Zadar, August 2010

41

Cdlh 2010

0 1

3

b
2

4

a

b
a

a a a

0 1

3

b
2

4

a

b
a

a a a

A

AT

Zadar, August 2010

42

Cdlh 2010

Some definitions

u is a k-successor of q if │u│=k and
δ(q,u)≠∅
u is a k-predecessor of q if │u│=k and
δT(q,uT)≠∅
λ is 0-successor and 0-predecessor of any
state

Zadar, August 2010

43

Cdlh 2010

0 1

3

b
2

4
b

a

a a a

A

aa is a 2-successor of 0 and 1 but not of
3
a is a 1-successor of 3
aa is a 2-predecessor of 3 but not of 1

a

Zadar, August 2010

44

Cdlh 2010

A NFA is deterministic with look-
 ahead k if ∀q,q’∈Q: q≠q’

(q,q’∈I) ∨

(q,q’∈δ(q”,a))

⇒

(u

is a k-successor of q) ∧
(v

is a k-successor of q’) ⇒ u≠v

Zadar, August 2010

45

Cdlh 2010

Prohibited:

2

1

a

a

u

u

│u│=k

Zadar, August 2010

46

Cdlh 2010

Example

This automaton is not deterministic with
look-ahead 1 but is deterministic with look-

 ahead 2

0 1

3

b
2

4

a

b
a

a a a

Zadar, August 2010

47

Cdlh 2010

K-reversible automata
A is k-reversible if A is deterministic and
AT is deterministic with look-ahead k

Example

0 1

b

2ba
a

b

0 1

b

2ba
a

b
deterministic deterministic with look-ahead 1

Zadar, August 2010

48

Cdlh 2010

Notations

RL(Σ, k) is the set of all k reversible
languages over alphabet Σ

RL(Σ) is the set of all k-reversible
languages over alphabet Σ (ie for all values
of k)

ak-RL is the learning algorithm we describe

Zadar, August 2010

49

Cdlh 2010

Properties

There are some regular languages that are
not in RL(Σ)

RL(Σ,k)⊂ RL(Σ,k-1)

Zadar, August 2010

50

Cdlh 2010

Violation of k-reversibility
Two states q, q’

violate the k-reversibility

condition if
they violate the deterministic condition:
q,q’∈δ(q”,a)

or
they violate the look-ahead condition:

q,q’∈F, ∃u∈Σk: u is k-predecessor of both q
and q’
∃u∈Σk, δ(q,a)=δ(q’,a) and u is k-predecessor
of both q and q’

Zadar, August 2010

51

Cdlh 2010

Learning k-reversible
automata

Key idea: the order in which the merges
are performed does not matter!
Just merge states that do not comply with
the conditions for k-reversibility

Zadar, August 2010

52

Cdlh 2010

K-RL algorithm (ak-RL)

Data:

k∈ℕ, S sample of a k-RL language L

A0

=PTA(S)
π

={{q}:q∈Q}

While

∃B,B’∈π

k-reversibility violators do
 π= π-B-B’ ∪

{B∪B’}

A=A0

/π

Zadar, August 2010

53

Cdlh 2010

K-RL Algorithm (ak-RL)

Data:

k∈ℕ, S sample of a k-RL language L
A=PTA(S)
While

∃q,q’ k-reversibility violators do

A=merge(A,q,q’)

Zadar, August 2010

54

Cdlh 2010

Let S={a, aa, abba, abbbba}

a

λ ab abb

aa

abbbbabbb abbbba

abba
a

b b b b a

a

a

k=2

Violators, for u= ba

Zadar, August 2010

55

Cdlh 2010

S={a, aa, abba, abbbba}

a

λ ab abb

aa

abbbbabbb

abba
a

b b b b

a

a

a

k=2

Violators, for u= bb

Zadar, August 2010

56

Cdlh 2010

S={a, aa, abba, abbbba}

a

λ ab abb

aa

abbb

abba
a

b b b

b

a

a

k=2

Suppose k=1. Then

now

a, aa and abba violate.

Zadar, August 2010

57

Cdlh 2010

Properties (1)

∀k≥0, ∀S, ak-RL(S) is a k-reversible
language
L(ak-RL(S)) is the smallest k-reversible
language that contains S

The class RL(Σ, k) is identifiable in the
limit from text

Zadar, August 2010

58

Cdlh 2010

Properties (2)

Any regular language is k-reversible iff
(u1

v)-1L ∩(u2

v)-1L≠∅

and │v│=k
⇒

(u1

v)-1L=(u2

v)-1L

(if two strings are prefixes of a string of
length at least k, then the strings are

Nerode-equivalent)

Zadar, August 2010

59

Cdlh 2010

Properties (3)

L(ak-RL(S)) ⊂ L(a(k-1)-RL(S))

RL(Σ, k) ⊂ RL(Σ, k-1)

Zadar, August 2010

60

Cdlh 2010

Properties (4)

The time complexity is O(k║S║3)

The space complexity is O(║S║)

Zadar, August 2010

61

Cdlh 2010

Properties (4)
Polynomial aspects

Polynomial characteristic sets
Polynomial update time
But not necessarily a polynomial number of
mind changes

Zadar, August 2010

62

Cdlh 2010

Extensions

Sakakibara built an extension for context-
free grammars whose tree language is k-
reversible
Marion & Besombes propose an extension to
tree languages
Different authors propose to learn these
automata and then estimate the probabilities
as an alternative to learning stochastic
automata

Zadar, August 2010

63

Cdlh 2010

Exercises

Build a language L that is not k-reversible,
∀k≥0
Prove that the class of all k-reversible
languages is not learnable from text
Run ak-RL on S={aa, aba, abb, abaaba,
baaba} for k=0,1,2,3

Zadar, August 2010

64

Cdlh 2010

Solution (idea)

Lk={ai: i≤k}
Then for each k: Lk is k-reversible but not
k-1 reversible.

And ULk = a*

So there is an accumulation point…

Zadar, August 2010

65

Cdlh 2010

6 Conclusions

Window languages

Zadar, August 2010

66

Cdlh 2010

Exercise (1)
Let Jn={w∈Σ*: ⏐w⏐≤n}
And J=U{Jn}
Find an algorithm that identifies J in the limit
from text
Prove that this algorithm works in polynomial
update time
Prove that it admits a polynomial locking
sequence (characteristic set)
Prove that the algorithm does not meet
Yokomori’s conditions

Zadar, August 2010

67

Cdlh 2010

Exercise (2)

Let Bn,w={u∈Σ*: dedit(u,w)≤n}
And B=U{Bn,w}

Find an algorithm that identifies B in the
limit from text.
Does your algorithm meet Yokomori’s
conditions?

	Learning from Text
	Acknowledgements
	Outline
	1 Identification in the limit
	Learning from text
	GI as a search problem
	Questions?
	2 The theory
	Limit point
	L is a limit point
	Theorem
	Mincons classes
	Accumulation point (Kapur 91)
	L is an accumulation point
	Theorem (for Mincons classes)
	Infinite Elasticity
	Infinite Elasticity
	Finite elasticity
	Theorem (Wright)
	Tell tale sets
	Theorem (Angluin)
	Proposition (Kapur 91)
	Summarizing
	3 Learning k-testable languages
	Definition
	Diapositive numéro 26
	An example (2-testable)
	Window language
	The hierarchy of k-TSS languages
	A language that is not k-testable
	K-TSS inference
	Example
	Building the corresponding automaton
	Running the algorithm
	Properties (1)
	Properties (2)
	Properties (3)
	4 Learning k-reversible languages from text
	The k-reversible languages
	Diapositive numéro 40
	Diapositive numéro 41
	Some definitions
	Diapositive numéro 43
	Diapositive numéro 44
	Prohibited:
	Example
	K-reversible automata
	Notations
	Properties
	Violation of k-reversibility
	Learning k-reversible automata
	K-RL algorithm (ak-RL)
	K-RL Algorithm (ak-RL)
	Let S={a, aa, abba, abbbba}
	S={a, aa, abba, abbbba}
	S={a, aa, abba, abbbba}
	Properties (1)
	Properties (2)
	Properties (3)
	Properties (4)
	Properties (4) �Polynomial aspects
	Extensions
	Exercises
	Solution (idea)
	6 Conclusions
	Exercise (1)
	Exercise (2)

