

UMR CNRS 6241 Université de Nantes Ecole des Mines de Nantes

Learning from Text

Colin de la Higuera University of Nantes

1

Acknowledgements

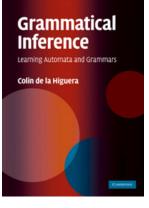
 Laurent Miclet, Jose Oncina, Tim Oates, Anne-Muriel Arigon, Leo Becerra-Bonache, Rafael Carrasco, Paco Casacuberta, Pierre Dupont, Rémi Eyraud, Philippe Ezequel, Henning Fernau, Jean-Christophe Janodet, Satoshi Kobayachi, Thierry Murgue, Frédéric Tantini, Franck Thollard, Enrique Vidal, Menno van Zaanen,...

http://pagesperso.lina.univ-nantes.fr/~cdlh/ http://videolectures.net/colin_de_la_higuera/

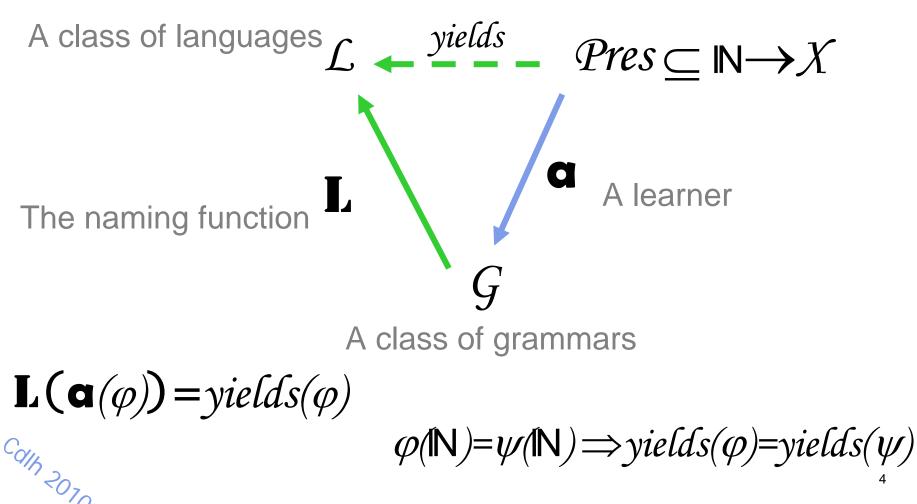
Outline

- 1. Motivations, definition and difficulties
- 2. Some negative results
- 3. Learning k-testable languages from text
- 4. Learning *k*-reversible languages from text
- 5. Conclusions

http://pagesperso.lina.univ-nantes.fr/~cdlh/slides/ Chapters 8 and 11



1 Identification in the limit

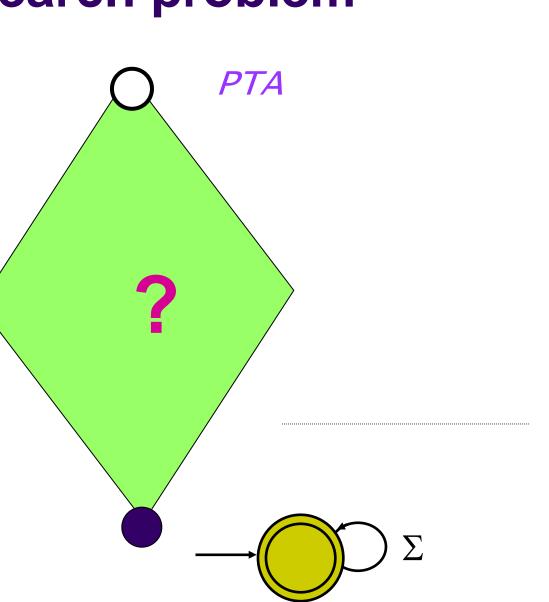


Zadar, August 2010

Learning from text

- Only positive examples are available
- Danger of over-generalization: why not return $\Sigma^{\star}?$
- The problem is "basic":
 - Negative examples might not be available
 - Or they might be heavily biased: nearmisses, absurd examples...
- Base line: all the rest is learning with help

GI as a search problem



Questions?

- Data is unlabelled...
- Is this a clustering problem?
- Is this a problem posed in other settings?

Collh 2010

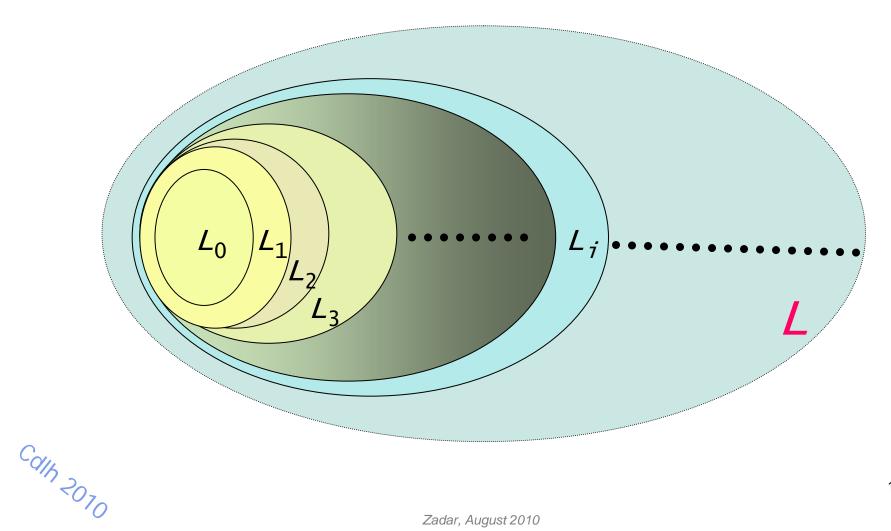
2 The theory

- Gold 67: No super-finite class can be identified from positive examples (or text) only
- Necessary and sufficient conditions for learning
- Literature:
 - inductive inference,
 - ALT series, ...

Limit point

- A class \mathcal{L} of languages has a limit point *if* there exists an infinite sequence $\mathcal{L}_{n \in \mathbb{N}}$ of languages in \mathcal{L} such that $\mathcal{L}_0 \subset \mathcal{L}_1 \subset \dots \mathcal{L}_n \subset$..., and there exists another language $\mathcal{L} \in \mathcal{L}$ such that $\mathcal{L} = \bigcup_{n \in \mathbb{N}} \mathcal{L}_n$
- $\ensuremath{\textit{L}}$ is called a limit point of $\ensuremath{\mathcal{L}}$

L is a limit point



Theorem

- If ${\mathcal L}$ admits a limit point, then ${\mathcal L}$ is not learnable from text
- <u>Proof:</u> Let s^i be a presentation in length-lex order for L_i , and s be a presentation in length-lex order for L. Then $\forall n \in \mathbb{N} \exists i \mid \forall k \leq n$ $s^i_k = s_k$

<u>Note:</u> having a limit point is a sufficient condition for non learnability; not a necessary condition

Mincons classes

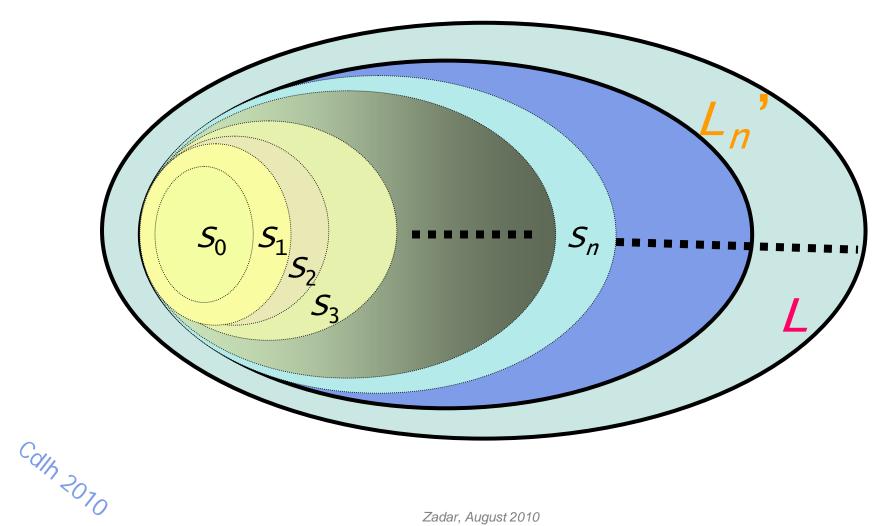
- A class is mincons if there is an algorithm which, given a sample S, builds a $G \in G$ such that $S \subseteq L \subseteq L(G) \Rightarrow L = L(G)$
- Ie there is a unique minimum (for inclusion) consistent grammar

Accumulation point (Kapur 91)

A class \mathcal{L} of languages has an accumulation point *if* there exists an infinite sequence $S_{n \, n \in \mathbb{N}}$ of sets such that $S_0 \subseteq S_1 \subseteq \dots S_n \subseteq \dots$, and $\mathcal{L} = \bigcup_{n \in \mathbb{N}} S_n \in \mathcal{L}$...and for any $n \in \mathbb{N}$ there exists a language \mathcal{L}_n' in \mathcal{L} such that $S_n \subseteq \mathcal{L}_n' \subset \mathcal{L}$.

The language $\boldsymbol{\textit{L}}$ is called an accumulation point of $\boldsymbol{\textit{L}}$

L is an accumulation point



Theorem (for Mincons classes)

\mathcal{L} admits an accumulation point *iff* \mathcal{L} is not learnable from text

Infinite Elasticity

- If a class of languages has a limit point there exists an infinite ascending chain of languages $L_0 \subset L_1$ $\subset ... \subset L_n \subset ...$
- This property is called infinite elasticity

Infinite Elasticity $\left|X_{i+1}\right| X_{i+2} X_{i+3}$ *X*₁ Xi *X*₀ *X*₁₊₄ X_{2} *X*₃

Collh 2070

Finite elasticity

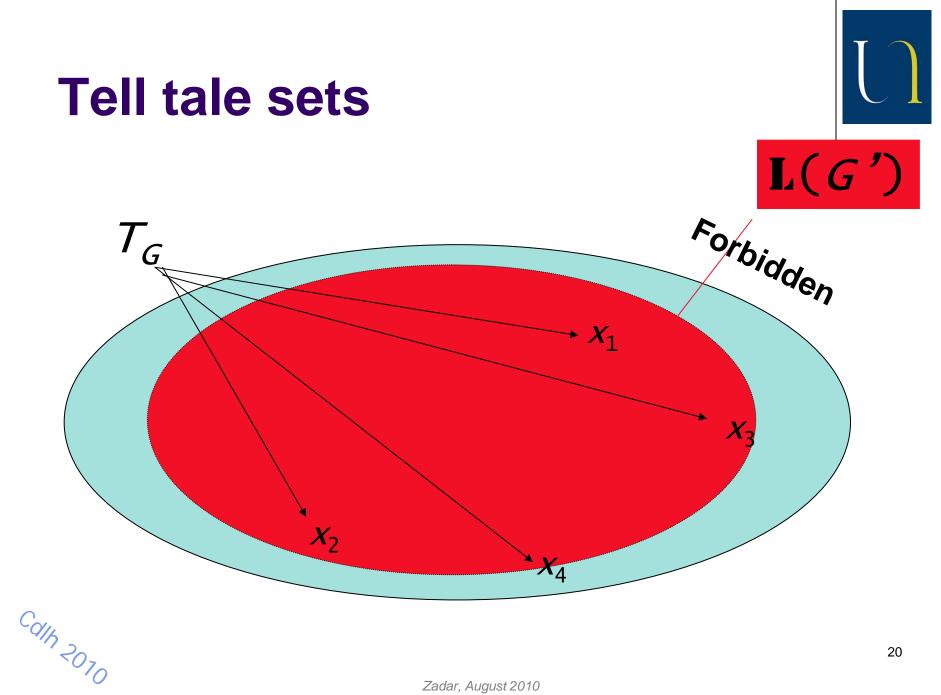
 \mathcal{L} has *finite elasticity* if it does not have infinite elasticity

Callh 2070

Theorem (Wright)

If $\mathcal{L}(G)$ has finite elasticity and is mincons, then G is learnable.

Callh 2070



Theorem (Angluin)

- G is learnable *iff* there is a computable partial function ψ : $G \times \mathbb{N} \to \Sigma^*$ such that:
- 1) $\forall n \in \mathbb{N}, \psi(G, n) \text{ is defined } iff G \in G \text{ and } \mathbf{L}(G) \neq \emptyset$
- 2) ∀G∈G, T_M={ψ(G,n): n∈IN} is a finite subset of
 L(G) called a *tell-tale* subset
- 3) $\forall G,G' \in \mathcal{M}$, if $T_{\mathcal{M}} \subseteq \mathbf{L}(G')$ then $\mathbf{L}(G) \not\subset \mathbf{L}(G)$

Proposition (Kapur 91)

A language L in \hat{L} has a *tell-tale subset iff* L is not an accumulation point.

(for mincons)

Summarizing

- Many alternative ways of proving that identification in the limit is not feasible
- Methodological-philosophical discussion
- We still need practical solutions

3 Learning k-testable languages

P. García and E. Vidal. Inference of K-testable languages in the strict sense and applications to syntactic pattern recognition. *Pattern Analysis and Machine Intelligence*, 12(9):920-925, 1990 P. García, E. Vidal, and J. Oncina. Learning locally testable languages in the strict sense. In *Workshop on Algorithmic Learning Theory (*Alt *90)*, pages 325-338, 1990

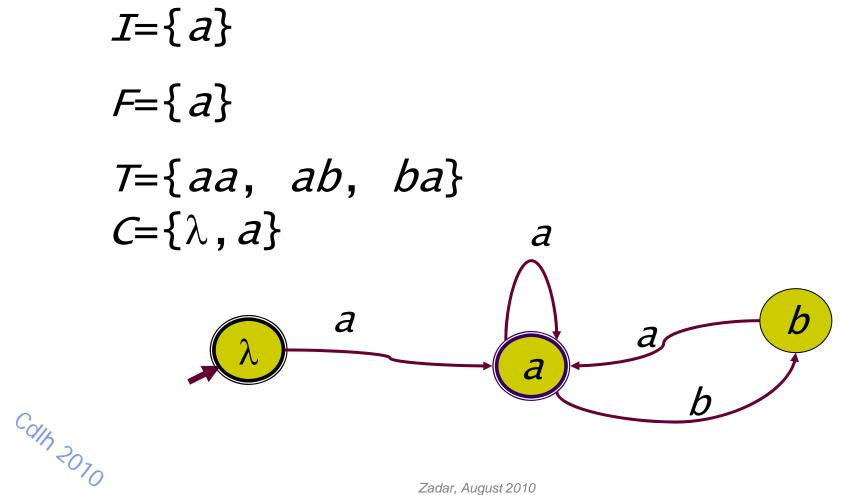
Definition

Let $k \ge 0$, a k-testable language in the strict sense (k-TSS) is a 5-tuple $Z_k = (\Sigma, I, F, T, C)$ with:

- Σ a finite alphabet
- *I*, *F* ⊆ Σ^{k-1} (allowed prefixes of length k-1 and suffixes of length k-1)
- $T \subseteq \Sigma^k$ (allowed segments)
- $C \subseteq \Sigma^{k}$ contains all strings of length less than k
- Note that $I \cap F = C \cap \Sigma^{k-1}$

- The k-testable language is $L(Z_k)=I\Sigma^* \cap \Sigma^*F - \Sigma^*(\Sigma^k - T)\Sigma^* \cup C$
- Strings (of length at least k) have to use a good prefix and a good suffix of length k-1, and all sub-strings have to belong to T. Strings of length less than k should be in C
- Or: Σ^{k} -T defines the prohibited segments
- Key idea: use a window of size k

An example (2-testable)



Window language

- By sliding a window of size 2 over a string we can parse
- ababaaababababaaaab OK
- aaabbaaaababab not OK

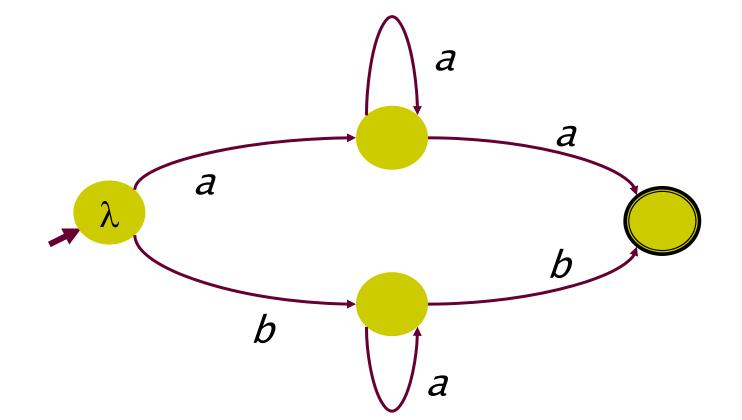
Collh 2010

The hierarchy of *k-TSS* languages

- k-TSS(Σ)={ $L \subseteq \Sigma^*$: L is k-TSS}
- All finite languages are in k-TSS(Σ) if k is large enough!
- k-TSS(Σ) \subset [k+1]-TSS(Σ)
- $(ba^k)^* \in [k+1] TSS(\Sigma)$
- $(ba^k)^* \notin k TSS(\Sigma)$

Callh 2010

A language that is not *k*-testable



K-TSS inference

Given a sample S, $L(a_{k-TSS}(S)) = Z_k$ where $Z_k = (\Sigma(S), I(S), F(S), T(S), C(S))$ and

- $\Sigma(S)$ is the alphabet used in S
- $\mathcal{C}(S)=\Sigma(S)^{k}\cap S$
- $I(S) = \Sigma(S)^{k-1} \cap \operatorname{Pref}(S)$
- $F(S) = \Sigma(S)^{k-1} \cap Suff(S)$
- $T(S)=\Sigma(S)^k \cap \{v: uvw \in S\}$

Example

- *S*={*a*, *aa*, *abba*, *abbbba*}
- Let *k*=3

Collh 2070

- Σ(S)={a, b}
- *I*(*S*)= {*aa*, *ab*}
- *F(S*)= {*aa*, *ba*}
- C(S)= {a , aa}
- *T*(*S*)={*abb*, *bbb*, *bba*}

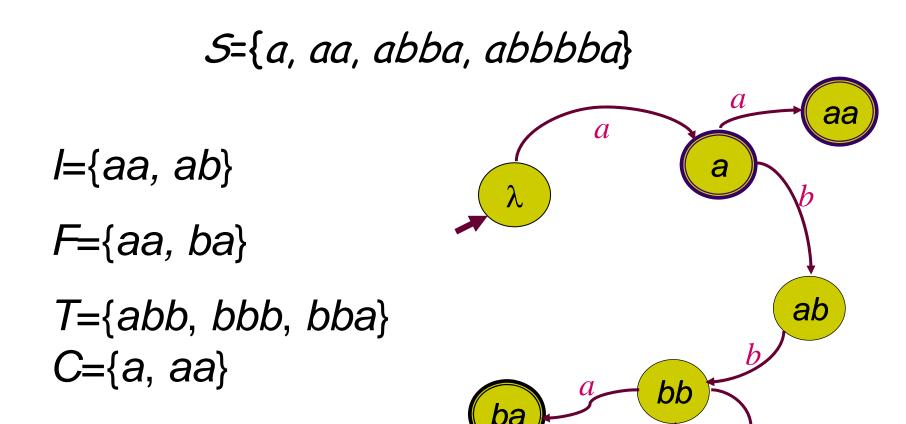
• $L(a_{3-TSS}(S)) = ab^*a + a$

Building the corresponding automaton

- Each string in $I \cup C$ and $PREF(I \cup C)$ is a state
- Each substring of length k-1 of strings in T is a state
- λ is the initial state
- Add a transition labeled b from u to ub for each state ub
- Add a transition labeled b from au to ub for each aub in T
- Each state/substring that is in F is a final state
 Each state/substring that is in C is a final state

Running the algorithm

Callh 2010



Properties (1)

- $S \subseteq L(a_{k-TSS}(S))$
- L(a_{k-TSS}(S)) is the smallest k-TSS language that contains S
 - If there is a smaller one, some prefix, suffix or substring has to be absent

Properties (2)

- \mathbf{a}_{k-TSS} identifies any k-TSS language in the limit from polynomial data
 - Once all the prefixes, suffixes and substrings have been seen, the correct automaton is returned
- If $Y \subseteq S$, $L(a_{k-TSS}(Y)) \subseteq L(a_{k-TSS}(S))$

Properties (3)

- $L(a_{k+1-TSS}(S)) \subseteq L(a_{k-TSS}(S))$ In I_{k+1} (resp. F_{k+1} and T_{k+1}) there are less allowed prefixes (resp. suffixes or substrings) than in I_k (resp. F_k and T_k)
- $\forall k \max_{x \in S} |x|$, $L(a_{k-TSS}(S)) = S$
 - Because for a large k, $T_k(S) = \emptyset$

4 Learning *k*-reversible languages from text

D. Angluin. Inference of reversible languages. *Journal of the Association for Computing Machinery*, 29(3):741-765, 1982

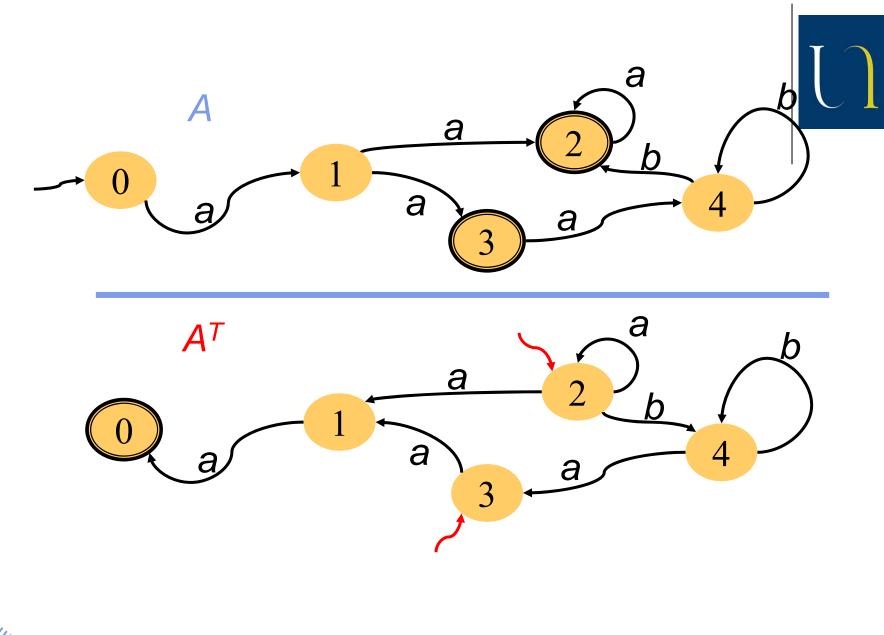
The k-reversible languages

- The class was proposed by Angluin (1982)
- The class is identifiable in the limit from text
- The class is composed by regular languages that can be accepted by a *DFA* such that its reverse is *deterministic with a look-ahead of k*

Let $A=(\Sigma, Q, \delta, I, F)$ be a NFA, we denote by $A^{T}=(\Sigma, Q, \delta^{T}, F, I)$ the reversal automaton with:

$\delta^{T}(q,a)=\{q'\in Q: q\in \delta(q',a)\}$

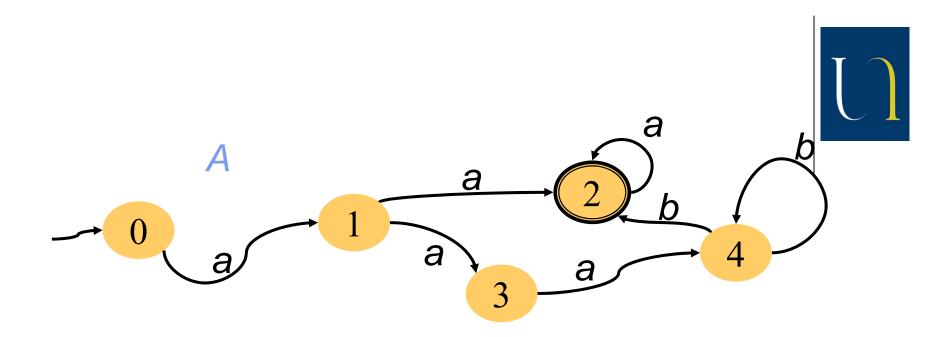
Collh 2070



Callh 2070

Some definitions

- u is a k-successor of q if |u|=k and δ(q,u)≠∅
- u is a k-predecessor of q if |u| = k and $\delta^T(q,u^T) \neq \emptyset$
- λ is 0-successor and 0-predecessor of any state

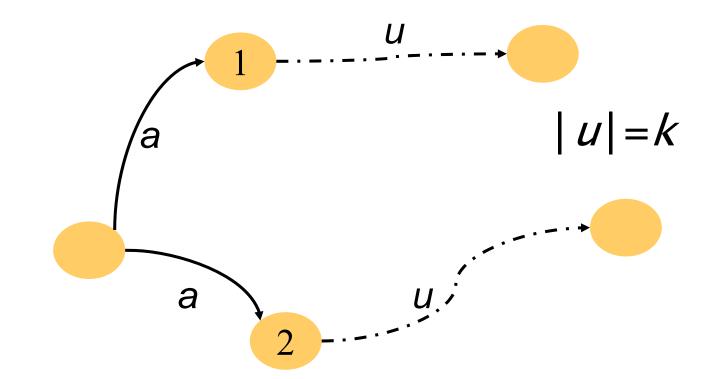


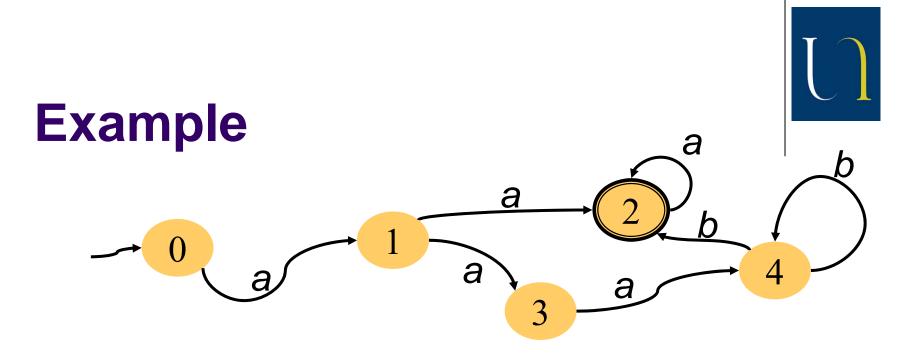
- aa is a 2-successor of 0 and 1 but not of
 3
- *a* is a 1-successor of 3
- *aa* is a 2-predecessor of 3 but not of 1

A NFA is deterministic with lookahead k if $\forall q,q' \in Q: q \neq q'$ $(q,q' \in I) \lor (q,q' \in \delta(q'',a))$

$(u \text{ is a } k\text{-successor of } q) \land$ (v is a k-successor of q') $\Rightarrow U \neq V$

Prohibited:

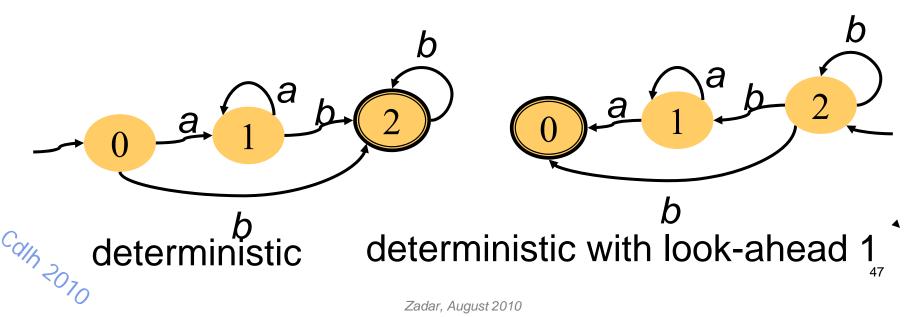




This automaton is not deterministic with look-ahead 1 but is deterministic with lookahead 2

K-reversible automata

- A is k-reversible if A is deterministic and A^{T} is deterministic with look-ahead k
- Example



Notations

- $RL(\Sigma, k)$ is the set of all k reversible languages over alphabet Σ
- $R\mathcal{L}(\Sigma)$ is the set of all *k*-reversible languages over alphabet Σ (ie for all values of *k*)

• \mathbf{a}_{k-RL} is the learning algorithm we describe

Properties

• There are some regular languages that are not in $\mathcal{RL}(\Sigma)$

•
$$RL(\Sigma, k) \subset RL(\Sigma, k-1)$$

Callh 2070

Violation of *k*-reversibility

- Two states q, q' violate the k-reversibility condition if
- they violate the deterministic condition: $q,q' \in \delta(q'',a)$

or

- they violate the look-ahead condition:
 - q,q'∈F, ∃u∈Σ^k: u is k-predecessor of both q and q'
 - ∃u∈Σ^k, δ(q,a)=δ(q',a) and u is k-predecessor
 of both q and q'

Learning k-reversible automata

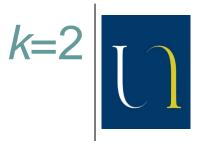
- Key idea: the order in which the merges are performed does not matter!
- Just merge states that do not comply with the conditions for k-reversibility

K-RL algorithm (a_{k-RL})

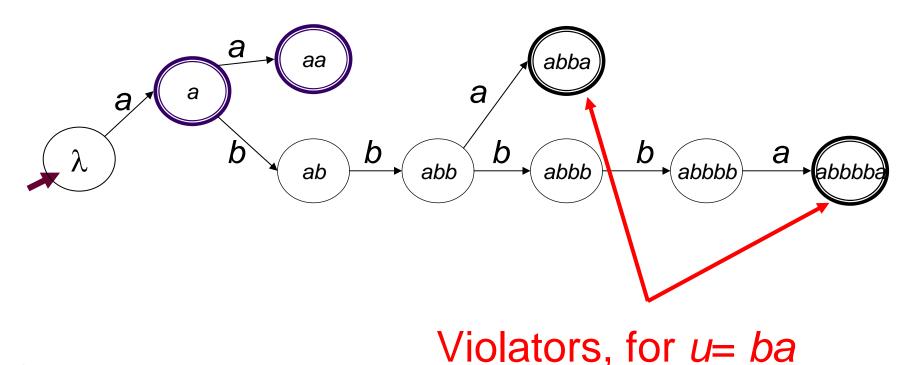
Data: $k \in \mathbb{N}$, S sample of a k-RL language L

$A_{0}=PTA(S)$ $\pi = \{\{q\}: q \in Q\}$ While $\exists B, B' \in \pi$ k-reversibility violators do $\pi = \pi - B - B' \cup \{B \cup B\}$ $A = A_{0}/\pi$

K-RL Algorithm (a_{k-RL})

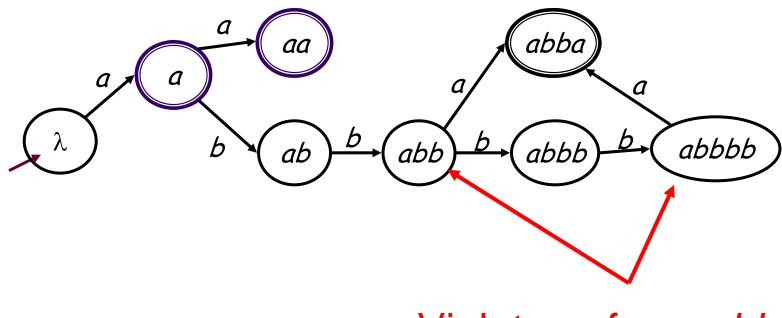


Let S={a, aa, abba, abbbba}



Callh 2070

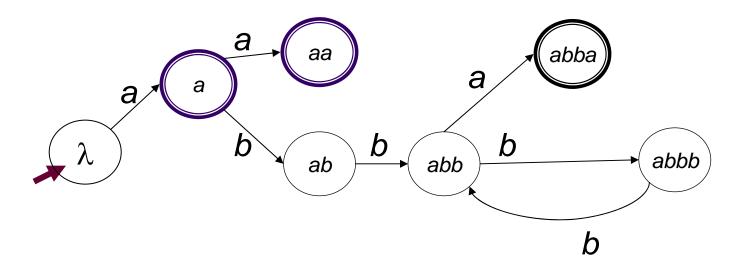
S={a, aa, abba, abbbba}



Violators, for *u*= *bb*

Collh 2070

S={a, aa, abba, abbbba}



Suppose k=1. Then now a, aa and abba violate.

Properties (1)

- ∀k≥0, ∀S, a_{k-RL}(S) is a k-reversible language
- L(a_{k-RL}(S)) is the smallest k-reversible language that contains S
- The class $RL(\Sigma, k)$ is identifiable in the limit from text

Properties (2)

• Any regular language is k-reversible iff $(u_1v)^{-1}L \cap (u_2v)^{-1}L \neq \emptyset$ and |v| = k \Rightarrow $(u_1v)^{-1}L = (u_2v)^{-1}L$

(if two strings are prefixes of a string of length at least *k*, then the strings are Nerode-equivalent)

Properties (3)

• $L(a_{k-RL}(S)) \subset L(a_{(k-1)-RL}(S))$

• $RL(\Sigma, k) \subset RL(\Sigma, k-1)$

Callh 2070

Properties (4)

The time complexity is $O(k \| S \|^3)$

The space complexity is O(||S||)

Callh 2010

Zadar, August 2010

Polynomial aspects

Properties (4)

Polynomial characteristic sets

- Polynomial update time
- But not necessarily a polynomial number of mind changes

Extensions

- Sakakibara built an extension for contextfree grammars whose tree language is kreversible
- Marion & Besombes propose an extension to tree languages
- Different authors propose to learn these automata and then estimate the probabilities as an alternative to learning stochastic automata

Exercises

- Build a language ∠ that is not k-reversible, ∀k≥0
- Prove that the class of all k-reversible languages is not learnable from text
- Run \mathbf{a}_{k-RL} on S={aa, aba, abb, abaaba, baaba} for k=0,1,2,3

Solution (idea)

- $L_k = \{a^i: i \leq k\}$
- Then for each k: L_k is k-reversible but not k-1 reversible.

• And
$$UL_k = a^*$$

• So there is an accumulation point...

6 Conclusions

• Window languages

Callh 2070

Exercise (1)

- Let $J_n = \{ w \in \Sigma^* : |w| \le n \}$
- And $\mathcal{J}=U\{\mathcal{J}_n\}$
- \bullet Find an algorithm that identifies $\mathcal I$ in the limit from text
- Prove that this algorithm works in polynomial update time
- Prove that it admits a polynomial locking sequence (characteristic set)
- Prove that the algorithm does not meet Yokomori's conditions

Exercise (2)

- Let $B_{n,w}$ ={ $u \in \Sigma^*$: $d_{edit}(u,w) \leq n$ }
- And $\mathcal{B}=\cup\{B_{n,w}\}$
- Find an algorithm that identifies \mathcal{B} in the limit from text.
- Does your algorithm meet Yokomori's conditions?