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1 Identification in the limit

L Pres ⊆
 

ℕ→XA class of languages

A class of grammars
G

L A learner
The naming function

yields

a

ϕ(ℕ)=ψ(ℕ) ⇒yields(ϕ)=yields(ψ)
L(a(ϕ))=yields(ϕ)
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Learning from text
Only positive examples are available
Danger of over-generalization: why not 
return Σ*?
The problem is “basic”:

Negative examples might not be available
Or they might be heavily biased: near-
misses, absurd examples…

Base line: all the rest is learning with 
help
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Σ

PTA

?

GI as a search problem
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Questions?

Data is unlabelled…
Is this a clustering problem?
Is this a problem posed in other settings?
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2 The theory

Gold 67: No super-finite class can be 
identified from positive examples (or 
text) only
Necessary and sufficient conditions for 
learning
Literature:

inductive inference, 
ALT series, …
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Limit point

A class L of languages has a limit point if
there exists an infinite sequence Ln n∈ℕ of 
languages in L such that      L0 ⊂ L1 ⊂ … Ln ⊂

…, and there exists another language L∈ L
such that L = ∪n∈ℕLn

L is called a limit point of L
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L is a limit point

L0 L1
L2
L3

Li

L
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Theorem

If L
 

admits a limit point, then L
 

is not 
learnable from text

Proof:Proof:
 

Let
 

si
 

be a presentation in length-lex
 order for

 
Li

 

, and s be a presentation in 
length-lex

 
order for

 
L. Then

 
∀n∈ℕ

 
∃i / ∀k≤n

 si
k

 

= sk

Note:
 

having a limit point is a sufficient 
condition for non learnability; not a necessary 
condition
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Mincons classes

A class is mincons if there is an algorithm 
which, given a sample S, builds a G∈G such 
that S ⊆ L ⊆ L(G) ⇒L = L(G)

Ie there is a unique minimum (for inclusion) 
consistent grammar
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Accumulation point (Kapur 91)

A class L
 

of languages has an 
accumulation point

 
if

 
there exists an 

infinite sequence Sn n∈ℕ
 

of sets such that 
S0 ⊆ S1 ⊆  

… Sn
 

⊆
 

…, and L= ∪n∈ℕSn
 

∈
 

L
…and for any n∈ℕ

 
there exists a 

language Ln
 

’
 

in L
 

such that Sn
 

⊆ Ln
 

’ ⊂ L. 

The language L is called an accumulation 
point

 
of L
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L is an accumulation point

L

Ln
 

’

S0 S1
S2
S3

Sn
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Theorem (for Mincons classes)

L  admits an accumulation point 
iff

L  is not learnable from text
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Infinite Elasticity

If a class of languages has a limit 
point there exists an infinite 
ascending chain of languages L0 ⊂ L1 
⊂ … ⊂ Ln ⊂ ….
This property is called infinite 
elasticity
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Infinite Elasticity

x0 x1
x2
x3

xi Xi+1 Xi+2 Xi+3 Xi+4
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Finite elasticity

L  has finite elasticity if it does not have 
infinite elasticity
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Theorem (Wright) 

If L
 

(G) has finite elasticity and is 
mincons, then G

 
is learnable.
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Tell tale sets

L(G)

L(G’)
TG

x4

x3

x2

x1

Forbidden
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Theorem (Angluin)

G
 

is learnable iff
 

there is a computable 
partial function ψ: G

 
×ℕ→Σ*

 
such that:

1)
 

∀n∈ℕ, ψ(G,n) is defined iff G∈G
 

and L(G)≠∅

2)
 

∀G∈G, TM
 

={ψ(G,n): n∈ℕ} is a finite subset of 
L(G) called a tell-tale subset

3)
 

∀G,G’∈M, if TM
 

⊆
 

L(G’) then L(G’)⊄
 

L(G)
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Proposition (Kapur 91)

A language L in L  has a tell-tale subset iff
 L is not

 
an accumulation point.

(for mincons)
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Summarizing

Many alternative ways of proving that 
identification in the limit is not feasible
Methodological-philosophical discussion
We still need practical solutions
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3 Learning k-testable 
languages

P. García
 

and E. Vidal. Inference of K-testable 
languages in the strict sense and applications to 

syntactic pattern recognition. Pattern Analysis and 
Machine Intelligence, 12(9):920–925, 1990

P. García, E. Vidal, and J. Oncina. Learning locally 
testable languages in the strict sense. In 

Workshop on Algorithmic Learning Theory (Alt 
90), pages 325–338, 1990
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Definition

Let k≥0, a k-testable language in the strict 
sense (k-TSS) is a 5-tuple Zk

 

=(Σ, I, F, T, C) 
with:
Σ a finite alphabet
I, F ⊆ Σk-1 (allowed prefixes of length k-1 and 
suffixes of length k-1)
T ⊆ Σk (allowed segments)
C ⊆ Σ<k contains all strings of length less than k
Note that I∩F=C∩Σk-1
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The k-testable language is 
L(Zk

 

)=IΣ*
 

∩ Σ*F -
 

Σ*(Σk-T)Σ*∪C
Strings (of length at least k) have to 
use a good prefix and a good suffix 
of length k-1, and all sub-strings 
have to belong to T. Strings of 
length less than k should be in C
Or: Σk-T defines the prohibited 
segments
Key idea: use a window of size k
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An example (2-testable)

I={a}

F={a}

T={aa, ab, ba}
C={λ,a}

a
b

λ
a

a

ba



Zadar, August 2010

28

Cdlh 2010

Window language

By sliding  a window of size 2 over a string 
we can parse
ababaaababababaaaab OK
aaabbaaaababab not OK
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The hierarchy of k-TSS 
languages

k-TSS(Σ)={L⊆Σ*: L is k-TSS}
All finite languages are in k-TSS(Σ) if k is 
large enough!
k-TSS(Σ) ⊂ [k+1]-TSS(Σ) 
(bak)* ∈ [k+1]-TSS(Σ) 
(bak)* ∉ k-TSS(Σ) 



Zadar, August 2010

30

Cdlh 2010

A language that is not k- 
testable

b

λ
a

a

b

a

a
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K-TSS inference

Given a sample S, L(ak-TSS
 

(S))= Zk
 

where 
Zk

 
=(Σ(S), I(S), F(S), T(S), C(S) ) and
Σ(S) is the alphabet used in S
C(S)=Σ(S)<k∩S
I(S)=Σ(S)k-1∩Pref(S)
F(S)= Σ(S)k-1∩Suff(S)
T(S)=Σ(S)k ∩ {v: uvw∈S}
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Example

S={a, aa, abba, abbbba}
Let k=3
Σ(S)={a, b} 
I(S)= {aa, ab}
F(S)= {aa, ba}
C(S)= {a , aa}
T(S)={abb, bbb, bba}

L(a3-TSS(S))= ab*a+a
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Building the corresponding 
automaton

Each string in I∪C and PREF(I∪C) is a state
Each substring of length k-1 of strings in T is a 
state
λ is the initial state
Add a transition labeled b from u to ub for each 
state ub
Add a transition labeled b from au to ub for each 
aub in T
Each state/substring that is in F is a final state
Each state/substring that is in C is a final state
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Running the algorithm

S={a, aa, abba, abbbba}

I={aa, ab}

F={aa, ba}

T={abb, bbb, bba}
C={a, aa}

a
λ

ab

ba
bb

aaa

b

b

b

a

a

a
λ

ab

ba
bb

aa
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Properties (1)

S ⊆ L(ak-TSS(S))

L(ak-TSS(S)) is the smallest k-TSS
language that contains S

If there is a smaller one, some prefix, suffix 
or substring has to be absent
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Properties (2)

ak-TSS identifies any k-TSS language in the 
limit from polynomial data

Once all the prefixes, suffixes and substrings 
have been seen, the correct automaton is 
returned

If Y⊆S, L(ak-TSS(Y)) ⊆ L(ak-TSS(S))
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Properties (3)

L(ak+1-TSS(S)) ⊆ L(ak-TSS(S))
In Ik+1

 

(resp. Fk+1
 

and Tk+1
 

) there are less 
allowed prefixes (resp. suffixes or 
substrings) than in Ik

 

(resp. Fk
 

and Tk
 

) 
∀k>maxx∈S⏐x⏐, L(ak-TSS(S))= S

Because for a large k, Tk(S)=∅
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4 Learning k-reversible 
languages from text

D. Angluin. Inference of reversible 
languages. Journal of the Association 
for Computing Machinery, 29(3):741–

 765, 1982
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The k-reversible languages
The class was proposed by Angluin (1982)
The class is identifiable in the limit from text
The class is composed by regular languages that 
can be accepted by a DFA such that its reverse is 
deterministic with a look-ahead of k
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Let A=(Σ, Q, δ, I, F) be a NFA, 
we denote by AT=(Σ, Q, δT, F, I) the reversal 

automaton with:

δT(q,a)={q’∈Q: q∈δ(q’,a)}
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0 1

3

b
2

4

a

b
a

a a a

0 1

3

b
2

4

a

b
a

a a a

A

AT
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Some definitions

u is a k-successor of q if │u│=k and 
δ(q,u)≠∅
u is a k-predecessor of q if │u│=k and 
δT(q,uT)≠∅
λ is 0-successor and 0-predecessor of any 
state
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0 1

3

b
2

4
b

a

a a a

A

aa is a 2-successor of 0 and 1 but not of 
3
a is a 1-successor of 3
aa is a 2-predecessor of 3 but not of 1 

a
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A NFA is deterministic with look-
 ahead k if ∀q,q’∈Q: q≠q’

(q,q’∈I) ∨
 

(q,q’∈δ(q”,a)) 

⇒

(u
 

is a k-successor of q) ∧
(v

 
is a k-successor of q’) ⇒ u≠v
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Prohibited:

2

1

a

a

u

u

│u│=k
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Example

This automaton is not deterministic with 
look-ahead 1 but is deterministic with look-

 ahead 2

0 1

3

b
2

4

a

b
a

a a a
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K-reversible automata
A is k-reversible if A is deterministic and 
AT is deterministic with look-ahead k

Example

0 1

b

2ba
a

b

0 1

b

2ba
a

b
deterministic deterministic with look-ahead 1
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Notations

RL(Σ, k) is the set of all k reversible 
languages over alphabet Σ

RL(Σ) is the set of all k-reversible 
languages over alphabet Σ (ie for all values 
of k)

ak-RL is the learning algorithm we describe
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Properties

There are some regular languages that are 
not in RL(Σ) 

RL(Σ,k)⊂ RL(Σ,k-1) 



Zadar, August 2010

50

Cdlh 2010

Violation of k-reversibility
Two states q, q’

 
violate the k-reversibility 

condition if
they violate the deterministic condition: 
q,q’∈δ(q”,a)

or
they violate the look-ahead condition:

q,q’∈F, ∃u∈Σk: u is k-predecessor of both q
and q’
∃u∈Σk, δ(q,a)=δ(q’,a) and u is k-predecessor 
of both q and q’
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Learning k-reversible 
automata

Key idea: the order in which the merges 
are performed does not matter!
Just merge states that do not comply with 
the conditions for k-reversibility
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K-RL algorithm (ak-RL )

Data:
 

k∈ℕ, S sample of a k-RL language L

A0
 

=PTA(S)
π

 
={{q}:q∈Q}

While
 

∃B,B’∈π
 

k-reversibility violators do
 π= π-B-B’ ∪

 
{B∪B’}

A=A0
 

/π
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K-RL Algorithm (ak-RL )

Data:
 

k∈ℕ, S sample of a k-RL language L
A=PTA(S)
While

 
∃q,q’ k-reversibility violators do

A=merge(A,q,q’)
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Let S={a, aa, abba, abbbba}

a

λ ab abb

aa

abbbbabbb abbbba

abba
a

b b b b a

a

a

k=2

Violators, for u= ba
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S={a, aa, abba, abbbba}

a

λ ab abb

aa

abbbbabbb

abba
a

b b b b

a

a

a

k=2

Violators, for u= bb
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S={a, aa, abba, abbbba}

a

λ ab abb

aa

abbb

abba
a

b b b

b

a

a

k=2

Suppose k=1. Then
 

now
 

a, aa and abba violate.
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Properties (1)

∀k≥0, ∀S, ak-RL(S) is a k-reversible 
language
L(ak-RL(S)) is the smallest k-reversible 
language that contains S

The class RL(Σ, k) is identifiable in the 
limit from text
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Properties (2)

Any regular language is k-reversible iff
(u1

 

v)-1L ∩(u2
 

v)-1L≠∅
 

and │v│=k
⇒

(u1
 

v)-1L=(u2
 

v)-1L

(if two strings are prefixes of a string of 
length at least k, then  the strings are 

Nerode-equivalent)
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Properties (3)

L(ak-RL(S)) ⊂ L(a(k-1)-RL(S))

RL(Σ, k) ⊂ RL(Σ, k-1) 



Zadar, August 2010

60

Cdlh 2010

Properties (4)

The time complexity is O(k║S║3)

The space complexity is O(║S║)
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Properties (4) 
Polynomial aspects

Polynomial characteristic sets
Polynomial update time
But not necessarily a polynomial number of 
mind changes
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Extensions

Sakakibara built an extension for context-
free grammars whose tree language is k-
reversible
Marion & Besombes propose an extension to 
tree languages
Different authors propose to learn these 
automata and then estimate the probabilities 
as an alternative to learning stochastic 
automata
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Exercises

Build a language L that is not k-reversible, 
∀k≥0
Prove that the class of all k-reversible 
languages is not learnable from text
Run ak-RL on S={aa, aba, abb, abaaba, 
baaba} for k=0,1,2,3
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Solution (idea)

Lk={ai: i≤k}
Then for each k: Lk is k-reversible but not 
k-1 reversible.

And ULk = a*

So there is an accumulation point…
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6 Conclusions

Window languages
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Exercise (1)
Let Jn={w∈Σ*: ⏐w⏐≤n}
And J=U{Jn}
Find an algorithm that identifies J in the limit 
from text
Prove that this algorithm works in polynomial 
update time
Prove that it admits a polynomial locking 
sequence (characteristic set)
Prove that the algorithm does not meet 
Yokomori’s conditions
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Exercise (2)

Let Bn,w={u∈Σ*: dedit(u,w)≤n}
And B=U{Bn,w}

Find an algorithm that identifies B in the 
limit from text.
Does your algorithm meet Yokomori’s
conditions?
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